Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Related tags

Deep Learningpcme
Overview

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Official Pytorch implementation of PCME | Paper

Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de Rezende2 Yannis Kalantidis2 Diane Larlus2

1NAVER AI LAB
2NAVER LABS Europe

VIDEO

Updates

  • 23 Jun, 2021: Initial upload.

Installation

Install dependencies using the following command.

pip install cython && pip install -r requirements.txt
python -c 'import nltk; nltk.download("punkt", download_dir="/opt/conda/nltk_data")'
git clone https://github.com/NVIDIA/apex && cd apex && pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Dockerfile

You can use my docker image as well

docker pull sanghyukchun/pcme:torch1.2-apex-dali

Please Add --model__cache_dir /vector_cache when you run the code

Configuration

All experiments are based on configuration files (see config/coco and config/cub). If you want to change only a few options, instead of re-writing a new configuration file, you can override the configuration as the follows:

python .py --dataloader__batch_size 32 --dataloader__eval_batch_size 8 --model__eval_method matching_prob

See config/parser.py for details

Dataset preparation

COCO Caption

We followed the same split provided by VSE++. Dataset splits can be found in datasets/annotations.

Note that we also need instances_2014.json for computing PMRP score.

CUB Caption

Download images from this link, and download caption from reedscot/cvpr2016. You can use the image path and the caption path separately in the code.

Evaluate pretrained models

NOTE: the current implementation of plausible match R-Precision (PMRP) is not efficient:
It first dumps all ranked items for each item to a local file, and compute R-precision.
We are planning to re-implement efficient PMRP as soon as possible.

COCO Caption

# Compute recall metrics
python evaluate_recall_coco.py ./config/coco/pcme_coco.yaml \
    --dataset_root  \
    --model_path model_last.pth \
    # --model__cache_dir /vector_cache # if you use my docker image
# Compute plausible match R-Precision (PMRP) metric
python extract_rankings_coco.py ./config/coco/pcme_coco.yaml \
    --dataset_root  \
    --model_path model_last.pth \
    --dump_to  \
    # --model__cache_dir /vector_cache # if you use my docker image

python evaluate_pmrp_coco.py --ranking_file 
Method I2T PMRP I2T [email protected] T2I PMRP T2I [email protected] Model file
PCME 45.0 68.8 46.0 54.6 link
PVSE K=1 40.3 66.7 41.8 53.5 -
PVSE K=2 42.8 69.2 43.6 55.2 -
VSRN 41.2 76.2 42.4 62.8 -
VSRN + AOQ 44.7 77.5 45.6 63.5 -

CUB Caption

python evaluate_cub.py ./config/cub/pcme_cub.yaml \
    --dataset_root  \
    --caption_root  \
    --model_path model_last.pth \
    # --model__cache_dir /vector_cache # if you use my docker image

NOTE: If you just download file from reedscot/cvpr2016, then caption_root will be cvpr2016_cub/text_c10

If you want to test other probabilistic distances, such as Wasserstein distance or KL-divergence, try the following command:

python evaluate_cub.py ./config/cub/pcme_cub.yaml \
    --dataset_root  \
    --caption_root  \
    --model_path model_last.pth \
    --model__eval_method  \
    # --model__cache_dir /vector_cache # if you use my docker image

You can choose distance_method in ['elk', 'l2', 'min', 'max', 'wasserstein', 'kl', 'reverse_kl', 'js', 'bhattacharyya', 'matmul', 'matching_prob']

How to train

NOTE: we train each model with mixed-precision training (O2) on a single V100.
Since, the current code does not support multi-gpu training, if you use different hardware, the batchsize should be reduced.
Please note that, hence, the results couldn't be reproduced if you use smaller hardware than V100.

COCO Caption

python train_coco.py ./config/coco/pcme_coco.yaml --dataset_root  \
    # --model__cache_dir /vector_cache # if you use my docker image

It takes about 46 hours in a single V100 with mixed precision training.

CUB Caption

We use CUB Caption dataset (Reed, et al. 2016) as a new cross-modal retrieval benchmark. Here, instead of matching the sparse paired image-caption pairs, we treat all image-caption pairs in the same class as positive. Since our split is based on the zero-shot learning benchmark (Xian, et al. 2017), we leave out 50 classes from 200 bird classes for the evaluation.

  • Reed, Scott, et al. "Learning deep representations of fine-grained visual descriptions." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
  • Xian, Yongqin, Bernt Schiele, and Zeynep Akata. "Zero-shot learning-the good, the bad and the ugly." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.

hyperparameter search

We additionally use cross-validation splits by (Xian, et el. 2017), namely using 100 classes for training and 50 classes for validation.

python train_cub.py ./config/cub/pcme_cub.yaml \
    --dataset_root  \
    --caption_root  \
    --dataset_name cub_trainval1 \
    # --model__cache_dir /vector_cache # if you use my docker image

Similarly, you can use cub_trainval2 and cub_trainval3 as well.

training with full training classes

python train_cub.py ./config/cub/pcme_cub.yaml \
    --dataset_root  \
    --caption_root  \
    # --model__cache_dir /vector_cache # if you use my docker image

It takes about 4 hours in a single V100 with mixed precision training.

How to cite

@inproceedings{chun2021pcme,
    title={Probabilistic Embeddings for Cross-Modal Retrieval},
    author={Chun, Sanghyuk and Oh, Seong Joon and De Rezende, Rafael Sampaio and Kalantidis, Yannis and Larlus, Diane},
    year={2021},
    booktitle={Conference on Computer Vision and Pattern Recognition (CVPR)},
}

License

MIT License

Copyright (c) 2021-present NAVER Corp.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
Owner
NAVER AI
Official account of NAVER AI, Korea No.1 Industrial AI Research Group
NAVER AI
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/

10 Dec 20, 2022
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 🤗 HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
Steerable discovery of neural audio effects

Steerable discovery of neural audio effects Christian J. Steinmetz and Joshua D. Reiss Abstract Applications of deep learning for audio effects often

Christian J. Steinmetz 182 Dec 29, 2022
[CVPR 2021] Pytorch implementation of Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs In this work, we propose a framework HijackGAN, which enables non-linear latent space travers

Hui-Po Wang 46 Sep 05, 2022
Morphable Detector for Object Detection on Demand

Morphable Detector for Object Detection on Demand (ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand. I

9 Feb 23, 2022
🤗 Paper Style Guide

🤗 Paper Style Guide (Work in progress, send a PR!) Libraries to Know booktabs natbib cleveref Either seaborn, plotly or altair for graphs algorithmic

Hugging Face 66 Dec 12, 2022
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network

ild-cnn This is supplementary material for the manuscript: "Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neur

22 Nov 05, 2022
The Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems This repository includes the dataset, experiments results, and code for the paper: Few-Shot B

Andrea Madotto 103 Dec 28, 2022
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022
Generative Adversarial Text to Image Synthesis

Text To Image Synthesis This is a tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the pa

Hao 575 Jan 08, 2023
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

Phil Wang 19 May 06, 2022
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022
This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"

CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www

Seyed Mahdi Roostaiyan 2 Nov 08, 2022
ZeroVL - The official implementation of ZeroVL

This repository contains source code necessary to reproduce the results presente

31 Nov 04, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Learning Open-World Object Proposals without Learning to Classify

Learning Open-World Object Proposals without Learning to Classify Pytorch implementation for "Learning Open-World Object Proposals without Learning to

Dahun Kim 149 Dec 22, 2022
Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows Official implementation of the paper DeFlow: Learning Complex Im

Valentin Wolf 86 Nov 16, 2022
Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Peter Schaldenbrand 247 Dec 23, 2022
This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

DropEdge: Towards Deep Graph Convolutional Networks on Node Classification This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Con

401 Dec 16, 2022