Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation

Overview

FLAME

Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation, accepted at the 17th IEEE Internation Conference on Advanced Video and Signal-based Surveillance, AVSS 2021, Virtual, November 16-19, 2021.

arXiv Preprint: arXiv

Dependencies used

  • python v3.6.13
  • cuda v10.2
  • numpy v1.19.2
  • pandas v1.1.3
  • opencv-python-headless v4.5.1.48 (or use equivalent opencv)
  • torch v1.8.0
  • torchvision v0.9.0
  • scipy v1.5.2
  • matplotlib v3.3.4

FLAME - Model and Results

Model Architecture for FLAME -

FLAME Architecture

Results -

Experimental Settings ColumbiaGaze EYEDIAP
FLAME mean = 4.64 deg, std = 2.86 deg mean = 4.62 deg, std = 2.93 deg
F-AO mean = 5.06 deg, std = 3.13 deg mean = 4.80 deg, std = 3.02 deg
F-AF mean = 5.88 deg, std = 3.06 deg mean = 5.30 deg, std = 3.03 deg
F-B mean = 5.93 deg, std = 3.20 deg mean = 5.32 deg, std = 3.08 deg

Project Installation

This code requires Python 3, Pytorch, Cuda and other dependencies as listed above. Open Command Prompt/Terminal and use the following commands to clone the project and install dependencies (python, pip are pre-requisites) -

$ git clone https://github.com/neelabhsinha/flame.git
$ cd flame
$ pip3 install -r requirements.txt
$ python3 main.py -h

Alternatively you can install the above dependencies in your environment as you prefer. The exact versions used in this project are listed above. To be able to do necessary data preprocessing, you would also optionally require Openface 2.0 (or any other 2D landmark extractor) and RetinaFace (or any other way to extract face crops). These are optional requirements and feel free to use any other toolkit to achieve the required objective. For more details read through the section 'Preparing the dataset'.

Project Description

The functions in the code have doctext which describe the purpose of the function and their parameters, return type.

Files in the project are described in the following table -

File Description
datasets/data.py Contains dataset class and sampler class used by the data loader in training/testing loop to generate data samples (edit this if you organize the data differently as compared to how it is mentioned in 'preparing the dataset' section).
losses/angular_loss.py Pytorch definition of 3D angular loss function used for evaluations.
losses/vector_loss.py Pytorch definition of vector difference loss function used for training.
models Contains Pytorch definition of models proposed in the paper as defined in the table below.
metadata Contains dataset metadata like split, max-min values as explained in the below sections.
utils/data_split.py Contains function to split the data into train, test and validation sets and save it at the desired place (see 'optional configurations' section below for details).
utils/helpers.py Contains function to crop eye sample randomly, used by the dataset class in datasets/data.py, and function that generates heatmap, used by get_and_save_heatmap function in utils/data_preprocess.py (all functions defined here are used by other functions and need not be used directly by the programmer).
utils/preprocess.py Contains preprocessing functions, like getting head_pose angles from rotation matrix, outermost method to extract 2D facial landmark heatmap for entire dataset, get max-min values of different modalities of a dataset, and a few helper functions (see 'optional configurations' and 'preparing the dataset' sections below for more details).
utils/train.py Contains 2 functions, one function to train the network containing training loop and related functionalities like loading a checkpoint, saving epoch results, and another method incorporating the entire forward pass pipeline which can be used for training, testing, and for any other purpose as desired (see 'training' section below for details).
utils/test.py Contains method that runs evaluations on test set of a data and saves the predictions (see 'evaluations/testing' section below).
config.py Contains configuration veriables like dataset paths, project path, path to store weights, logs, and training hyperparameters like maximum epoch, batch size. Edit this file before running the project with appropriate paths.
main.py Contains main code that drives the entire project as per arguments provided (details are explained in following sections).

Each model as described in the paper is identified with a unique key in this code which we shall address by model_key in this readme. The keys to those models along with the pretrained checkpoints (containing model weights, and other variables related to the final state) are given in the table below -

Model Name Model key (model_key) Model definition Columbiagaze Checkpoint EYEDIAP Checkpoint
FLAME mmtm-fusion models/mmtm_fusion.py Checkpoint Checkpoint
F-AO concatenated-fusion models/aggregation_only.py TBA TBA
F-AF additive-fusion models/additive_fusion.py TBA TBA
F-B baseline models/baseline.py TBA TBA

We shall explain how to use this model_key when we cover how to run the code in the below sections. The format of these checkpoints is in the form of dictionary with following schema -

{
  'epoch': epoch number, 
  'model_state_dict': model_weights, 
  'optimizer_state_dict': optimizer state,
  'scheduler_state_dict': scheduler_state,
  'loss_train': mean_training_loss, 
  'loss_cv': mean_cv_loss
}

Prepraring the dataset

Prepare a directory structure as the following and add the root in the dataset_paths dictionary in config.py.

dataset_root
│
└───images
│   │───subject01
│   │   │   1.npy
│   |   │   2.npy
│   |   │   ...
│   │
│   └───subject02
│   |   │   1.npy
│   |   │   2.npy
│   |   │   ...
│   |....
│   
└───heatmaps
│   │───subject01
│   │   │   1.npy
│   |   │   2.npy
│   |   │   ...
│   │
│   └───subject02
│   |   │   1.npy
│   |   │   2.npy
│   |   │   ...
│   |....
|
└───facial_landmarks_2d
│   │───subject01.pkl
│   |───subject02.pkl
|   |....
│   
|
└───head_pose
│   │───subject01.pkl
│   |───subject02.pkl
|   |....
│   
└───gaze_target
│   │───subject01.pkl
│   |───subject02.pkl
|   |....
│   
  • images - RGB images as numpy arrays with dimension (height, width, channels) of the complete face crop. Stored as one folder for each subject, and images of the particular subject contained inside as numpy arrays.
  • heatmaps - 2D landmark heatmaps as numpy arrays with dimension (height, width, channels) of the complete face crop. Stored as one folder for each subject, and images of the particular subject contained inside as numpy arrays.
  • facial_landmarks_2d - 2D facial landmarks in the form of numpy arrays saved as pickle (index i of a file contains data corresponding to (i+1)th image and heatmap file inside the given subject folder with the same name as that of the pickle file).
  • head_pose - Head pose angles in the form of numpy arrays of the type [pitch, yaw, roll] angle numpy arrays (index i of a file contains data corresponding to (i+1)th image and heatmap file inside the given subject folder with the same name as that of the pickle file). If not available, headpose can be used from the output of Openface 2.0.
  • gaze_angles - Gaze angles in the form of numpy arrays of the type [yaw, pitch] angle numpy arrays (index i of a file contains data corresponding to (i+1)th image and heatmap file inside the given subject folder with the same name as that of the pickle file). This is the ground truth.

Steps -

  1. Extract Face crops from RetinaFace and zero-pad them to nearest 4:5 ratio (or any other way to extract face crops).
  2. Crop them to 384 * 450 pixels. The dimension of RGB images, hence, will be 384*450*3.
  3. Run Openface 2.0 on these images (or any other way to extract landmarks in desired order as given by Openface)
  4. Collect the 2D facial landmarks from it in the above directory structure as per the given instruction above. Each element will be a 112-dimensional numpy array (for 28 2D landmarks for both eyes in the format (fl_x_0, fl_x_1,...,fl_x_55,fl_y_0,fl_y_1,...,fl_y_55), with 0-27 index for the right eye and 28-55 for the left eye. There will be same number of such elements as the number of images in corresponding images folder. So, for a subject, this will be a numpy array of dimensions (num_images, 112).
  5. Collect the images, head pose, and gaze targets in the above directory structure as per given instructions. To generate head_pose angles from rotation matrix, use get_head_pose_angles from utils/preprocess.py. For a subject, dimension of head pose will be (number of images, 3) and gaze targets will be (number of images, 2), both as numpy arrays.
  6. Add the root dataset directory to dataset_paths by dataset_name:dataset_path in config.py (Use this dataset_name everywhere in the code for all dataset name related parameters in the code).
  7. Generate heatmaps from the 2D landmarks after completing step 1-6. You can use the function get_and_save_heatmap given in utils/preprocess.py with dataset_name as parameter. Use the following command -
$ python3 main.py --get_heatmap --dataset <dataset_name>
  1. It should create heatmaps directory and save the heatmaps there, with same format as that of images, and each heatmap to be 384*480*28. Corresponding landmarks for left and the right eye will be in the same channel, and one will be cropped out during loading the data when eye crops are generated. This is done to make the heatmap less sparse and save memory during storage, while also make data loading efficient.

The dataset directory is now ready.

Notes

  • Maintain 1...n continuous numbers for images, heatmaps and save other data in pickle at corresponding 0-(n-1) indices
  • Take care of the file formats

Other Configurations required

Please do the following before running the code

  1. Please add all the dependencies in your environment which support the given version.
  2. In config.py file, change/add all the dataset paths, and other parameters as defined.

Optional Configurations

Few other metadata that are required but is already given along with this repository for our experiments are described below. You may run it on your own but it's not compulsory.

  1. Generating Split - Decide which folders will be in train, test, and val splits. Can be done using the following script (our split is available in metadata/splits directory) -
$ python3 main.py --split_data --split_nature cross-person --data <dataset_name>

Function is available at utils/data_split.py for viewing the schema of the file

  1. Getting maximum and minimum values of each input and output - Used for normalization purposes and is extracted only for the training data. For our split and data, the parameters are given in metadata/data_statistics in the form of a dictionary stored as pickle. Use the following command to extract these parameters -
$ python3 main.py --get_data_stats --dataset <dataset_name>

Function is available at utils/preprocess.py by the name get_mean_and_std

Evaluations/Testing

  1. Set up the project using above steps
  2. Download the weights from the specified locations
  3. Execute the following command -
$ python3 main.py --test <model_key> --dataset <dataset_name of training dataset> --test_data <dataset_name of testing dataset> --load_checkpoint <complete path of the checkpoint on which model is to be tested>

A csv file will be stored at the test_path location as specified in config.py by the name '<train_dataset_name>_<test_dataset_name>_<model_key>.csv' having the following schema for all provided images in order -

index, yaw_p, pitch_p, yaw_t, pitch_t, loss_3d, error_y, error_p

Apart from this, a log file is maintained by the name testing_<dataset_name>_<model_name>_cross-person.log in the loggers_loc directory.

Note -

  • To generate predictions on the customized pipeline, you can create an input pipeline on your own and use the function forward_propagation inside utils/train.py and provide the inputs to the same. It will return you the values in order of a tuple ((predicted_yaw, predicted_pitch),(true_yaw, true_pitch), error) of type (tensor, tensor, float).

Training

  1. Set up the project using above steps
  2. Execute the following command -
$ python3 main.py --train <model_key> --dataset <dataset_name>

To change training hyperparameters, change variables in config.py file

Training from a checkpoint -

$ python3 main.py --train <model_key< --dataset <dataset_name> --load_checkpoint <complete path of checkpoint file>

A log file is maintained by the name training_<dataset_name>_<model_name>_cross-person.log in the loggers_loc directory logging details of losses after each epoch is completed.

Citation

If you found our work helpful in your use case, please cite the following paper -

Owner
Neelabh Sinha
Student, BITS, Pilani
Neelabh Sinha
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
"Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021)

STAR_KGC This repo contains the source code of the paper accepted by WWW'2021. "Structure-Augmented Text Representation Learning for Efficient Knowled

Bo Wang 60 Dec 26, 2022
End-to-end Temporal Action Detection with Transformer. [Under review]

TadTR: End-to-end Temporal Action Detection with Transformer By Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Song Bai, Xiang Bai. This repo holds the c

Xiaolong Liu 105 Dec 25, 2022
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
A Broader Picture of Random-walk Based Graph Embedding

Random-walk Embedding Framework This repository is a reference implementation of the random-walk embedding framework as described in the paper: A Broa

Zexi Huang 23 Dec 13, 2022
Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021) Kun Wang, Zhenyu Zhang, Zhiqiang Yan, X

kunwang 66 Nov 24, 2022
Benchmark library for high-dimensional HPO of black-box models based on Weighted Lasso regression

LassoBench LassoBench is a library for high-dimensional hyperparameter optimization benchmarks based on Weighted Lasso regression. Note: LassoBench is

Kenan Šehić 5 Mar 15, 2022
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
Applying CLIP to Point Cloud Recognition.

PointCLIP: Point Cloud Understanding by CLIP This repository is an official implementation of the paper 'PointCLIP: Point Cloud Understanding by CLIP'

Renrui Zhang 175 Dec 24, 2022
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.

Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la

Pedro Herrero-Vidal 3 Jul 12, 2022
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

OpenMMLab 3.2k Jan 05, 2023
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
Labels4Free: Unsupervised Segmentation using StyleGAN

Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet

70 Dec 23, 2022
Kaggle DSTL Satellite Imagery Feature Detection

Kaggle DSTL Satellite Imagery Feature Detection

Konstantin Lopuhin 206 Oct 29, 2022
A series of Jupyter notebooks with Chinese comment that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow.

Hands-on-Machine-Learning 目的 这份笔记旨在帮助中文学习者以一种较快较系统的方式入门机器学习, 是在学习Hands-on Machine Learning with Scikit-Learn and TensorFlow这本书的 时候做的个人笔记: 此项目的可取之处 原书的

Baymax 1.5k Dec 21, 2022