Project NII pytorch scripts

Overview

project-NII-pytorch-scripts

By Xin Wang, National Institute of Informatics, since 2021

I am a new pytorch user. If you have any suggestions or questions, pleas email wangxin at nii dot ac dot jp

Table of Contents


1. Note

For tutorials on neural vocoders

Tutorials are available in ./tutorials. Please follow the ./tutorials/README and work in this folder first

cd ./tutorials
head -n 2 README.md
# Hands-on materials for neural vocoders

For other projects

Just follow the rest of the README.

The repository is relatively large. You may use --depth 1 option to skip unnecessary files.

git clone --depth 1 https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts.git

Updates

2022-01-08: upload hn-sinc-nsf + hifi-gan

2022-01-08: upload RawNet2 for anti-spoofing

2. Overview

This repository hosts Pytorch codes for the following projects:

2.1 Neural source-filter waveform model

./project/01-nsf

  1. Cyclic-noise neural source-filter waveform model (NSF)

  2. Harmonic-plus-noise NSF with trainable sinc filter (Hn-sinc-NSF)

  3. Harmonic-plus-noise NSF with fixed FIR filter (Hn-NSF)

  4. Hn-sinc-NSF + HiFiGAN discriminator

All the projects include a pre-trained model on CMU-arctic database (4 speakers) and a demo script to run, train, do inference. Please check ./project/01-nsf/README.

Generated samples from pre-trained models are in ./project/01-nsf/*/__pre_trained/output. If not, please run the demo script to produce waveforms using pre-trained models.

Tutorial on NSF models is also available in ./tutorials

Note that this is the re-implementation of the projects based on CURRENNT. All the papers published so far used CURRENNT implementation.

Many samples can be found on NSF homepage.

2.2 Other neural waveform models

./project/05-nn-vocoders

  1. WaveNet vocoder

  2. WaveGlow

  3. Blow

  4. iLPCNet

All the projects include a pre-trained model and a one-click demo script. Please check ./project/05-nn-vocoders/README.

Generated samples from pre-trained models are in ./project/05-nn-vocoders/*/__pre_trained/output.

Tutorial is also available in ./tutorials

2.3 ASVspoof project with toy example

./project/04-asvspoof2021-toy

It takes time to download ASVspoof2019 database. Therefore, this project demonstrates how to train and evaluate the anti-spoofing model using a toy dataset.

Please try this project before checking other ASVspoof projects below.

A similar project is adopted for ASVspoof2021 LFCC-LCNN baseline, although the LFCC front-end is slightly different.

Please check ./project/04-asvspoof2021-toy/README.

2.4 Speech anti-spoofing for ASVspoof 2019 LA

./project/03-asvspoof-mega

This is for this anti-spoofing project (A Comparative Study on Recent Neural Spoofing Countermeasures for Synthetic Speech Detection, paper on arxiv).

There were 36 systems investigated, each of which was trained and evaluated for 6 rounds with different random seeds.

EER-mintDCF

This project is later extended to a book chapter called A Practical Guide to Logical Access Voice Presentation Attack Detection. Single system using RawNet2 is added, and score fusion is added.

EER-mintDCF

Pre-trained models, scores, training recipes are all available. Please check ./project/03-asvspoof-mega/README.

2.5 (Preliminary) speech anti-spoofing

./project/02-asvspoof

  1. Baseline LFCC + LCNN-binary-classifier (lfcc-lcnn-sigmoid)

  2. LFCC + LCNN + angular softmax (lfcc-lcnn-a-softmax)

  3. LFCC + LCNN + one-class softmax (lfcc-lcnn-ocsoftmax)

  4. LFCC + ResNet18 + one-class softmax (lfcc-restnet-ocsoftmax)

This is a pilot test on ASVspoof2019 LA task. I trained each system for 6 times on various GPU devices (single V100 or P100 card), each time with a different random initial seed. Figure below shows the DET curves for these systems: det_curve

The results vary a lot when simply changing the initial random seeds, even with the same random seed, Pytorch environment, and deterministic algorithm selected. This preliminary test motivated the study in ./project-03-asvspoof-mega.

For LCNN, please check this paper; for LFCC, please check this paper; for one-class softmax in ASVspoof, please check this paper.

3. Python environment

You may use ./env.yml to create the environment:

# create environment
conda env create -f env.yml

# load environment (whose name is pytorch-1.6)
conda activate pytorch-1.6

4. How to use

Take project/01-nsf/cyc-noise-nsf as an example:

# cd into one project
cd project/01-nsf/cyc-noise-nsf-4

# add PYTHONPATH and activate conda environment
source ../../../env.sh 

# run the script
bash 00_demo.sh

The printed info will show what is happening. The script may need 1 day or more to finish.

You may also put the job to the background rather than waiting for the job in front of the terminal:

# run the script in background
bash 00_demo.sh > log_batch 2>&1 &

The above steps will download the CMU-arctic data, run waveform generation using a pre-trained model, and train a new model.

5. Project design and convention

Data format

  • Waveform: 16/32-bit PCM or 32-bit float WAV that can be read by scipy.io.wavfile.read

  • Other data: binary, float-32bit, little endian (numpy dtype ). The data can be read in python by:

# for a data of shape [N, M]
f = open(filepath,'rb')
datatype = np.dtype(('
   ,(M,)))
data = np.fromfile(f,dtype=datatype)
f.close()

I assume data should be stored in c_continuous format (row-major). There are helper functions in ./core_scripts/data_io/io_tools.py to read and write binary data:

# create a float32 data array
import numpy as np
data = np.asarray(np.random.randn(5, 3), dtype=np.float32)

# write to './temp.bin' and read it as data2
import core_scripts.data_io.io_tools as readwrite
readwrite.f_write_raw_mat(data, './temp.bin')
data2 = readwrite.f_read_raw_mat('./temp.bin', 3)

# result should 0
data - data2

More instructions can be found in the Jupyter notebook ./tutorials/c01_data_format.ipynb.

Files in this repository

Name Function
./core_scripts scripts to manage the training process, data io, and so on
./core_modules finished pytorch modules
./sandbox new functions and modules to be test
./project project directories, and each folder correspond to one model for one dataset
./project/*/*/main.py script to load data and run training and inference
./project/*/*/model.py model definition based on Pytorch APIs
./project/*/*/config.py configurations for training/val/test set data

The motivation is to separate the training and inference process, the model definition, and the data configuration. For example:

  • To define a new model, change model.py

  • To run on a new database, change config.py

How the script works

The script starts with main.py and calls different function for model training and inference.

During training:

     <main.py>        Entry point and controller of training process
        |           
   Argument parse     core_scripts/config_parse/arg_parse.py
   Initialization     core_scripts/startup_config.py
   Choose device     
        | 
Initialize & load     core_scripts/data_io/customize_dataset.py
training data set
        |----------|
        .     Load data set   <config.py> 
        .     configuration 
        .          |
        .     Loop over       core_scripts/data_io/customize_dataset.py
        .     data subset
        .          |       
        .          |---------|
        .          .    Load one subset   core_scripts/data_io/default_data_io.py
        .          .         |
        .          |---------|
        .          |
        .     Combine subsets 
        .     into one set
        .          |
        |----------|
        |
Initialize & load 
development data set  
        |
Initialize Model     <model.py>
Model(), Loss()
        | 
Initialize Optimizer core_scripts/op_manager/op_manager.py
        |
Load checkpoint      --trained-model option to main.py
        |
Start training       core_scripts/nn_manager/nn_manager.py f_train_wrapper()
        |             
        |----------|
        .          |
        .     Loop over training data
        .     for one epoch
        .          |
        .          |-------|    core_scripts/nn_manager/nn_manager.py f_run_one_epoch()
        .          |       |    
        .          |  Loop over 
        .          |  training data
        .          |       |
        .          |       |-------|
        .          |       .    get data_in, data_tar, data_info
        .          |       .    Call data_gen <- Model.forward(...)   <mode.py>
        .          |       .    Call Loss.compute()                   <mode.py>
        .          |       .    loss.backward()
        .          |       .    optimizer.step()
        .          |       .       |
        .          |       |-------|
        .          |       |
        .          |  Save checkpoint 
        .          |       |
        .          |  Early stop?
        .          |       | No  \
        .          |       |      \ Yes
        .          |<------|       |
        .                          |
        |--------------------------|
       Done

A detailed flowchat is ./misc/APPENDIX_1.md. This may be useful if you want to hack on the code.

6 On NSF projects (./project/01-nsf)

Differences from CURRENNT implementation

There may be more, but here are the important ones:

  • "Batch-normalization": in CURRENNT, "batch-normalization" is conducted along the length sequence, i.e., assuming each frame as one sample;

  • No bias in CNN and FF: due to the 1st point, NSF in this repository uses bias=false for CNN and feedforward layers in neural filter blocks, which can be helpful to make the hidden signals around 0;

  • Smaller learning rate: due to the 1st point, learning rate in this repository is decreased from 0.0003 to a smaller value. Accordingly, more training epochs are required;

  • STFT framing/padding: in CURRENNT, the first frame starts from the 1st step of a signal; in this Pytorch repository (as Librosa), the first frame is centered around the 1st step of a signal, and the frame is padded with 0;

  • STFT backward: in CURRENNT, STFT backward follows the steps in this paper; in Pytorch repository, backward over STFT is done by the Pytorch library.

  • ...

The learning curves look similar to the CURRENNT version. learning_curve

24kHz

Most of my experiments are done on 16 kHz waveforms. For 24 kHz waveforms, FIR or sinc digital filters in the model may be changed for better performance:

  1. hn-nsf: lp_v, lp_u, hp_v, and hp_u are calculated for 16 kHz configurations. For different sampling rate, you may use this online tool http://t-filter.engineerjs.com to get the filter coefficients. In this case, the stop-band for lp_v and lp_u is extended to 12k, while the pass-band for hp_v and hp_u is extended to 12k. The reason is that, no matter what is the sampling rate, the actual formats (in Hz) and spectral of sounds don't change with the sampling rate;

  2. hn-sinc-nsf and cyc-noise-nsf: for the similar reason above, the cut-off-frequency value (0, 1) should be adjusted. I will try (hidden_feat * 0.2 + uv * 0.4 + 0.3) * 16 / 24 in model.CondModuleHnSincNSF.get_cut_f();

Links

The end

Owner
Yamagishi and Echizen Laboratories, National Institute of Informatics
Yamagishi and Echizen Laboratories, National Institute of Informatics, Japan
Yamagishi and Echizen Laboratories, National Institute of Informatics
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning

The Rich Get Richer: Disparate Impact of Semi-Supervised Learning Preprocess file of the dataset used in implicit sub-populations: (Demographic groups

<a href=[email protected]"> 4 Oct 14, 2022
Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis (CVPR2022)

Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis Multi-View Consistent Generative Adversarial Networks for 3D-aware

Xuanmeng Zhang 78 Dec 10, 2022
code for CVPR paper Zero-shot Instance Segmentation

Code for CVPR2021 paper Zero-shot Instance Segmentation Code requirements python: python3.7 nvidia GPU pytorch1.1.0 GCC =5.4 NCCL 2 the other python

zhengye 86 Dec 13, 2022
This Artificial Intelligence program can take a black and white/grayscale image and generate a realistic or plausible colorized version of the same picture.

Colorizer The point of this project is to write a program capable of taking a black and white / grayscale image, and generating a realistic or plausib

Maitri Shah 1 Jan 06, 2022
Image-Stitching - Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm

About The Project Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm (Random Sample Consensus). Author: Andreas P

Andreas Panayiotou 3 Jan 03, 2023
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
League of Legends Reinforcement Learning Environment (LoLRLE) multiple training scenarios using PPO.

League of Legends Reinforcement Learning Environment (LoLRLE) About This repo contains code to train an agent to play league of legends in a distribut

2 Aug 19, 2022
DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023
Pytorch Implementation for NeurIPS (oral) paper: Pixel Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

Pixel-Level Cycle Association This is the Pytorch implementation of our NeurIPS 2020 Oral paper Pixel-Level Cycle Association: A New Perspective for D

87 Oct 19, 2022
A Pytree Module system for Deep Learning in JAX

Treex A Pytree-based Module system for Deep Learning in JAX Intuitive: Modules are simple Python objects that respect Object-Oriented semantics and sh

Cristian Garcia 216 Dec 20, 2022
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the

morningstarwang 4 Dec 14, 2022
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Dec 31, 2022
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue. How do I cite D-REX? For now, cite

Alon Albalak 6 Mar 31, 2022
Transformers are Graph Neural Networks!

🚀 Gated Graph Transformers Gated Graph Transformers for graph-level property prediction, i.e. graph classification and regression. Associated article

Chaitanya Joshi 46 Jun 30, 2022
Earthquake detection via fiber optic cables using deep learning

Earthquake detection via fiber optic cables using deep learning Author: Fantine Huot Getting started Update the submodules After cloning the repositor

Fantine 4 Nov 30, 2022
The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o

WangWen 79 Dec 24, 2022
Prototypical Cross-Attention Networks for Multiple Object Tracking and Segmentation, NeurIPS 2021 Spotlight

PCAN for Multiple Object Tracking and Segmentation This is the offical implementation of paper PCAN for MOTS. We also present a trailer that consists

ETH VIS Group 328 Dec 29, 2022
The implementation of DeBERTa

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 06, 2023