(ICCV 2021) ProHMR - Probabilistic Modeling for Human Mesh Recovery

Related tags

Deep LearningProHMR
Overview

ProHMR - Probabilistic Modeling for Human Mesh Recovery

Code repository for the paper:
Probabilistic Modeling for Human Mesh Recovery
Nikos Kolotouros, Georgios Pavlakos, Dinesh Jayaraman, Kostas Daniilidis
ICCV 2021
[paper] [project page] [colab notebook]

teaser

Installation instructions

We recommend creating a clean conda environment and install all dependencies. You can do this as follows:

conda env create -f environment.yml

After the installation is complete you can activate the conda environment by running:

conda activate prohmr

Alternatively, you can also create a virtual environment:

python -m venv .prohmr_venv
source .prohmr_venv/bin/activate
pip install -r requirements.txt

The last step is to install prohmr as a Python package. This will allow you to import it from anywhere in your system. Since you might want to modify the code, we recommend installing as follows:

python setup.py develop

In case you want to evaluate our approach on Human3.6M, you also need to manually install the pycdf package of the spacepy library to process some of the original files. If you face difficulties with the installation, you can find more elaborate instructions here.

Fetch data

Download the pretrained model checkpoint together with some additional data (joint regressors, etc.) and place them under data/. We provide a script to fetch the necessary data for training and evaluation. You need to run:

./fetch_data.sh

Besides these files, you also need to download the SMPL model. You will need the neutral model for training and running the demo code, while the male and female models will be necessary for preprocessing the 3DPW dataset. Please go to the websites for the corresponding projects and register to get access to the downloads section. Create a folder data/smpl/ and place the models there.

Run demo code

The easiest way to try our demo is by providing images with their corresponding OpenPose detections. These are used to compute the bounding boxes around the humans and optionally fit the SMPL body model to the keypoint detections. We provide some example images in the example_data/ folder. You can test our network on these examples by running:

python demo.py --img_folder=example_data/images --keypoint_folder=example_data/keypoints --out_folder=out --run_fitting

You might see some warnings about missing keys for SMPL components, which you can ignore. The code will save the rendered results for the regression and fitting in the newly created out/ directory. By default the demo code performs the fitting in the image crop and not in the original image space. If you want to instead fit in the original image space you can pass the --full_frame flag.

Colab Notebook

We also provide a Colab Notebook here where you can test our method on videos from YouTube. Check it out!

Dataset preprocessing

Besides the demo code, we also provide code to train and evaluate our models on the datasets we employ for our empirical evaluation. Before continuing, please make sure that you follow the details for data preprocessing.

Run evaluation code

The evaluation code is contained in eval/. We provide 4 different evaluation scripts.

  • eval_regression.py is used to evaluate ProHMR as a regression model as in Table 1 of the paper.
  • eval_keypoint_fitting.py is used to evaluate the fitting on 2D keypoints as in Table 3 of the paper.
  • eval_multiview.py is used to evaluate the multi-view refinement as in Table 5 of the paper.
  • eval_skeleton.py is used to evaluate the probablistic 2D pose lifiting network similarly with Table 6 of the main paper. Example usage:
python eval/eval_keypoint_fitting.py --dataset=3DPW-TEST

Running the above command will compute the Reconstruction Error before and after the fitting on the test set of 3DPW. For more information on the available command line options you can run the command with the --help argument.

Run training code

Due to license limitiations, we cannot provide the SMPL parameters for Human3.6M (recovered using MoSh). Even if you do not have access to these parameters, you can still use our training code using data from the other datasets. Again, make sure that you follow the details for data preprocessing. Alternatively you can use the SMPLify 3D fitting code to generate SMPL parameter annotations by fitting the model to the 3D keypoints provided by the dataset. Example usage:

python train/train_prohmr.py --root_dir=prohmr_reproduce/

This will train the model using the default config file prohmr/configs/prohmr.yaml as described in the paper. It will also create the folders prohmr_reproduce/checkpoints and prohmr_reproduce/tensorboard where the model checkpoints and Tensorboard logs will be saved.

We also provide the training code for the probabilistic version of Martinez et al. We are not allowed to redistribute the Stacked Hourglass keypoint detections used in training the model in the paper, so in this version of the code we replace them with the ground truth 2D keypoints of the dataset. You can train the skeleton model by running:

python train/train_skeleton.py --root_dir=skeleton_lifting/

Running this script will produce a similar output with the ProHMR training script.

Acknowledgements

Parts of the code are taken or adapted from the following repos:

Citing

If you find this code useful for your research or the use data generated by our method, please consider citing the following paper:

@Inproceedings{kolotouros2021prohmr,
  Title          = {Probabilistic Modeling for Human Mesh Recovery},
  Author         = {Kolotouros, Nikos and Pavlakos, Georgios and Jayaraman, Dinesh and Daniilidis, Kostas},
  Booktitle      = {ICCV},
  Year           = {2021}
}
Owner
Nikos Kolotouros
I am a CS PhD student at the University of Pennsylvania working on Computer Vision and Machine Learning.
Nikos Kolotouros
3D Pose Estimation for Vehicles

3D Pose Estimation for Vehicles Introduction This work generates 4 key-points and 2 key-edges from vertices and edges of vehicles as ground truth. The

Jingyi Wang 1 Nov 01, 2021
Low-dose Digital Mammography with Deep Learning

Impact of loss functions on the performance of a deep neural network designed to restore low-dose digital mammography ====== This repository contains

WANG-AXIS 6 Dec 13, 2022
Code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

0. Introduction This repository contains the source code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning". Notes The netwo

NetX Group 68 Nov 24, 2022
Code for "On Memorization in Probabilistic Deep Generative Models"

On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in

The Alan Turing Institute 3 Jun 09, 2022
Exploring the Dual-task Correlation for Pose Guided Person Image Generation

Dual-task Pose Transformer Network The source code for our paper "Exploring Dual-task Correlation for Pose Guided Person Image Generation“ (CVPR2022)

63 Dec 15, 2022
PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluation of Visual Stories via Semantic Consistency"

Improving Generation and Evaluation of Visual Stories via Semantic Consistency PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluat

Adyasha Maharana 28 Dec 08, 2022
Source Code of NeurIPS21 paper: Recognizing Vector Graphics without Rasterization

YOLaT-VectorGraphicsRecognition This repository is the official PyTorch implementation of our NeurIPS-2021 paper: Recognizing Vector Graphics without

Microsoft 49 Dec 20, 2022
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022
Biomarker identification for COVID-19 Severity in BALF cells Single-cell RNA-seq data

scBALF Covid-19 dataset Analysis Here is the Github page that has the codes for the bioinformatics pipeline described in the paper COVID-Datathon: Bio

Nami Niyakan 2 May 21, 2022
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
Code for the Image similarity challenge.

ISC 2021 This repository contains code for the Image Similarity Challenge 2021. Getting started The docs subdirectory has step-by-step instructions on

Facebook Research 173 Dec 12, 2022
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
Unofficial implementation of Fast-SCNN: Fast Semantic Segmentation Network

Fast-SCNN: Fast Semantic Segmentation Network Unofficial implementation of the model architecture of Fast-SCNN. Real-time Semantic Segmentation and mo

Philip Popien 69 Aug 11, 2022
PyTorch implementation of paper: AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer, ICCV 2021.

AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer [Paper] [PyTorch Implementation] [Paddle Implementation] Overview This reposit

148 Dec 30, 2022
OMAMO: orthology-based model organism selection

OMAMO: orthology-based model organism selection OMAMO is a tool that suggests the best model organism to study a biological process based on orthologo

Dessimoz Lab 5 Apr 22, 2022
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave

Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories. Metrics provides i

Ben Hamner 1.6k Dec 26, 2022
領域を指定し、キーを入力することで画像を保存するツールです。クラス分類用のデータセット作成を想定しています。

image-capture-class-annotation 領域を指定し、キーを入力することで画像を保存するツールです。 クラス分類用のデータセット作成を想定しています。 Requirement OpenCV 3.4.2 or later Usage 実行方法は以下です。 起動後はマウスクリック4

KazuhitoTakahashi 5 May 28, 2021
Cosine Annealing With Warmup

CosineAnnealingWithWarmup Formulation The learning rate is annealed using a cosine schedule over the course of learning of n_total total steps with an

zhuyun 4 Apr 18, 2022
Predicting the duration of arrival delays for commercial flights.

Flight Delay Prediction Our objective is to predict arrival delays of commercial flights. According to the US Department of Transportation, about 21%

Jordan Silke 1 Jan 11, 2022