Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" (RSS 2022)

Overview

Intro

Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" Robotics:Science and Systems (RSS 2022)

[Project page] [Paper]

Dependencies

Set conda environment

conda create -n quadruped_nav python=3.8
conda activate quadruped_nav

Install torch(1.10.1), numpy(1.21.2), matplotlib, scipy, ruamel.yaml

conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge
conda install numpy=1.21.2
conda install matplotlib
conda install scipy
pip install ruamel.yaml

Install wandb and login. 'wandb' is a logging system similar to 'tensorboard'.

pip install wandb
wandb login

Install required python packages to compute Dynamic Time Warping in Parallel

pip install dtw-python
pip install fastdtw
pip install joblib

Install OMPL (Open Motion Planning Library). Python binding version of OMPL is used.

Download OMPL installation script in https://ompl.kavrakilab.org/installation.html.
chmod u+x install-ompl-ubuntu.sh
./install-ompl-ubuntu.sh --python

Simulator setup

RaiSim is used. Install it following the installation guide.

Then, set up RaisimGymTorch as following.

cd /RAISIM_DIRECTORY_PATH/raisimLib
git clone [email protected]:awesomericky/complex-env-navigation.git
cd complex-env-navigation
python setup.py develop

Path setup

Configure following paths. Parts that should be configured is set with TODO: PATH_SETUP_REQUIRED flag.

  1. Project directory
    • cfg['path']['home'] in /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/raisimGymTorch/env/envs/test/cfg.yaml
  2. OMPL Python binding
    • OMPL_PYBIND_PATH in /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/raisimGymTorch/env/envs/train/global_planner.py

Train model

Set logging: True in /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/raisimGymTorch/env/envs/train/cfg.yaml, if you want to enable wandb logging.

Train Forward Dynamics Model (FDM).

  • Click 'c' to continue when pdb stops the code
  • To quit the training, click 'Ctrl + c' to call pdb. Then click 'q'.
  • Path of the trained velocity command tracking controller should be given with -tw flag.
  • Evaluations of FDM are visualized in /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/trajectory_prediction_plot.
python raisimGymTorch/env/envs/train/FDM_train.py -tw /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/data/command_tracking_flat/final/full_16200.pt

Download data to train Informed Trajectory Sampler (386MB) [link]

# Unzip the downloaded zip file and move it to required path.
unzip analytic_planner_data.zip
mv analytic_planner_data /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/.

Train Informed Trajectory Sampler (ITS)

  • Click 'c' to continue when pdb stops the code.
  • To quit the training, click 'Ctrl + c' to call pdb. Then click 'q'.
  • Path of the trained Forward Dynamics Model should be given with -fw flag.
python raisimGymTorch/env/envs/train/ITS_train.py -fw /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/data/FDM_train/XXX/full_XXX.pt

Run demo

Configure the trained weight paths (cfg['path']['FDM'] and cfg['path']['ITS']) in /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/raisimGymTorch/env/envs/test/cfg.yaml. Parts that should be configured is set with TODO: WEIGHT_PATH_SETUP_REQUIRED flag.

Open RaiSim Unity to see the visualized simulation.

Run point-goal navigation with trained weight (click 'c' to continue when pdb stops the code)

python raisimGymTorch/env/envs/test/pgn_runner.py

Run safety-remote control with trained weight (click 'c' to continue when pdb stops the code)

python raisimGymTorch/env/envs/test/src_runner.py

To quit running the demo, click 'Ctrl + c' to call pdb. Then click 'q'.

Extra notes

  • This repository is not maintained anymore. If you have a question, send an email to [email protected].
  • We don't take questions regarding installation. If you install the dependencies successfully, you can easily run this.
  • For the codes in rsc/, ANYbotics' license is applied. MIT license otherwise.
  • More details of the provided velocity command tracking controller for quadruped robots in flat terrain can be found in this paper and repository.

Cite

@INPROCEEDINGS{Kim-RSS-22, 
    AUTHOR    = {Yunho Kim AND Chanyoung Kim AND Jemin Hwangbo}, 
    TITLE     = {Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation}, 
    BOOKTITLE = {Proceedings of Robotics: Science and Systems}, 
    YEAR      = {2022}, 
    ADDRESS   = {New York, USA}, 
    MONTH     = {June}
} 
Owner
Yunho Kim
Yunho Kim
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 01, 2022
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023
Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Thang Vu 15 Dec 02, 2022
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

[ICLR 2022] Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity by Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elen

VITA 18 Dec 31, 2022
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
Wikidated : An Evolving Knowledge Graph Dataset of Wikidata’s Revision History

Wikidated Wikidated 1.0 is a dataset of Wikidata’s full revision history, which encodes changes between Wikidata revisions as sets of deletions and ad

Lukas Schmelzeisen 11 Aug 16, 2022
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Kai Zhang 1.2k Dec 29, 2022
An implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 984 Dec 16, 2022
Fast methods to work with hydro- and topography data in pure Python.

PyFlwDir Intro PyFlwDir contains a series of methods to work with gridded DEM and flow direction datasets, which are key to many workflows in many ear

Deltares 27 Dec 07, 2022
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021) Kun Wang, Zhenyu Zhang, Zhiqiang Yan, X

kunwang 66 Nov 24, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
An all-in-one application to visualize multiple different local path planning algorithms

Table of Contents Table of Contents Local Planner Visualization Project (LPVP) Features Installation/Usage Local Planners Probabilistic Roadmap (PRM)

Abdur Javaid 47 Dec 30, 2022
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"

PyMAF This repository contains the code for the following paper: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop Hongwe

Hongwen Zhang 450 Dec 28, 2022
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022