On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification

Overview

Understanding Bayesian Classification

This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification by Sanyam Kapoor, Wesley J Maddox, Pavel Izmailov, and Andrew Gordon Wilson.

Key Ideas

Aleatoric uncertainty captures the inherent randomness of the data, such as measurement noise. In Bayesian regression, we often use a Gaussian observation model, where we control the level of aleatoric uncertainty with a noise variance parameter. By contrast, for Bayesian classification we use a categorical distribution with no mechanism to represent our beliefs about aleatoric uncertainty. Our work shows that:

  • Explicitly accounting for aleatoric uncertainty significantly improves the performance of Bayesian neural networks.
Aleatoric Conceptual
In classification problems, we do not have a direct way to specify our assumptions about aleatoric uncertainty. In particular, we might use the same Bayesian neural network model if we know the data contains label noise (scenario A) and if we know that there is no label noise (scenario B), leading to poor performance in at least one of these scenarios.
  • We can match or exceed the performance of posterior tempering by using a Dirichlet observation model, where we explicitly control the level of aleatoric uncertainty, without any need for tempering.
Tiny-Imagenet
Accounting for the label noise via the noisy Dirichlet model or the tempered softmax likelihood significantly improves accuracy and test negative log likelihood accross the board, here shown for the Tiny Imagenet dataset. The optimal performance is achieved for different values of temperature in the tempered softmax likelihood and the noise parameter for the noisy Dirichlet likelihood.
  • The cold posterior effect is effectively eliminated by properly accounting for aleatoric uncertainty in the likelihood model.
Cold Posterior Effect
BMA test accuracy for the noisy Dirichlet model with noise parameter 1e−6 and the softmax likelihood as a function of posterior temperature on CIFAR-10. The noisy Dirichlet model shows no cold posterior effect.

Setup

All requirements are listed in environment.yml. Create a conda environment using:

conda env create -n <env_name>

Next, ensure Python modules under the src folder are importable as,

export PYTHONPATH="$(pwd)/src:${PYTHONPATH}"

To use bnn_priors, see respective installation instructions.

Usage

The main script to run all SGMCMC experiments is experiments/train_lik.py.

As an example, to run cyclical SGHMC with our proposed noisy Dirichlet likelihood on CIFAR-10 with label noise, run:

python experiments/train_lik.py --dataset=cifar10 \
                                --label_noise=0.2 \
                                --likelihood=dirichlet \
                                --noise=1e-2 \
                                --prior-scale=1 \
                                --sgld-epochs=1000 \
                                --sgld-lr=2e-7 \
                                --n-cycles=50 \
                                --n-samples=50

Each argument to the main method can be used as a command line argument due to Fire. Weights & Biases is used for all logging. Configurations for various Weights & Biases sweeps are also available under configs.

License

Apache 2.0

MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
Bringing sanity to world of messed-up data

Sanitize sanitize is a Python module for making sure various things (e.g. HTML) are safe to use. It was originally written by Mark Pilgrim and is dist

Alireza Savand 63 Oct 26, 2021
A modular application for performing anomaly detection in networks

Deep-Learning-Models-for-Network-Annomaly-Detection The modular app consists for mainly three annomaly detection algorithms. The system supports model

Shivam Patel 1 Dec 09, 2021
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to match the in

677 Dec 28, 2022
Safe Policy Optimization with Local Features

Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi

Akifumi Wachi 6 Jun 05, 2022
Resilient projection-based consensus actor-critic (RPBCAC) algorithm

Resilient projection-based consensus actor-critic (RPBCAC) algorithm We implement the RPBCAC algorithm with nonlinear approximation from [1] and focus

Martin Figura 5 Jul 12, 2022
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
Network Enhancement implementation in pytorch

network_enahncement_pytorch Network Enhancement implementation in pytorch Research paper Network Enhancement: a general method to denoise weighted bio

Yen 1 Nov 12, 2021
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
KIDA: Knowledge Inheritance in Data Aggregation

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

24 Sep 08, 2022
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Changlin Li 127 Dec 26, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022
Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Cross-framework Python Package for Evaluation of Latent-based Generative Models Latte Latte (for LATent Tensor Evaluation) is a cross-framework Python

Karn Watcharasupat 30 Sep 08, 2022
⚓ Eurybia monitor model drift over time and securize model deployment with data validation

View Demo · Documentation · Medium article 🔍 Overview Eurybia is a Python library which aims to help in : Detecting data drift and model drift Valida

MAIF 172 Dec 27, 2022
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the

Philip Huang 270 Dec 14, 2022
Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

Jinming Su 27 Dec 08, 2022
This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch.

MPDL---TODO This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch. Ci

CodebaseLi 3 Nov 27, 2022
Repository for the electrical and ICT benchmark model developed in the ERIGrid 2.0 project.

Benchmark Model Electrical and ICT System This repository contains the documentation, code, and models for the electrical and ICT benchmark model deve

ERIGrid 2.0 1 Nov 29, 2021