PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

Overview

PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

This code aims to reproduce results obtained in the paper "Visual Feature Attribution using Wasserstein GANs" (official repo, TensorFlow code)

Description

This repository contains the code to reproduce results for the paper cited above, where the authors presents a novel feature attribution technique based on Wasserstein Generative Adversarial Networks (WGAN). The code works for both synthetic (2D) and real 3D neuroimaging data, you can check below for a brief description of the two datasets.

anomaly maps examples

Here is an example of what the generator/mapper network should produce: ctrl-click on the below image to open the gifv in a new tab (one frame every 50 iterations, left: input, right: anomaly map for synthetic data at iteration 50 * (its + 1)).

anomaly maps examples

Synthetic Dataset

"Data: In order to quantitatively evaluate the performance of the examined visual attribution methods, we generated a synthetic dataset of 10000 112x112 images with two classes, which model a healthy control group (label 0) and a patient group (label 1). The images were split evenly across the two categories. We closely followed the synthetic data generation process described in [31][SubCMap: Subject and Condition Specific Effect Maps] where disease effects were studied in smaller cohorts of registered images. The control group (label 0) contained images with ran- dom iid Gaussian noise convolved with a Gaussian blurring filter. Examples are shown in Fig. 3. The patient images (label 1) also contained the noise, but additionally exhib- ited one of two disease effects which was generated from a ground-truth effect map: a square in the centre and a square in the lower right (subtype A), or a square in the centre and a square in the upper left (subtype B). Importantly, both dis- ease subtypes shared the same label. The location of the off-centre squares was randomly offset in each direction by a maximum of 5 pixels. This moving effect was added to make the problem harder, but had no notable effect on the outcome."

image

ADNI Dataset

Currently we only implemented training on synthetic dataset, we will work on implement training on ADNI dataset asap (but pull requests are welcome as always), we put below ADNI dataset details for sake of completeness.

"We selected 5778 3D T1-weighted MR images from 1288 subjects with either an MCI (label 0) or AD (label 1) diagnosis from the ADNI cohort. 2839 of the images were acquired using a 1.5T magnet, the remainder using a 3T magnet. The subjects are scanned at regular intervals as part of the ADNI study and a number of subjects converted from MCI to AD over the years. We did not use these cor- respondences for training, however, we took advantage of it for evaluation as will be described later. All images were processed using standard operations available in the FSL toolbox [52][Advances in functional and structural MR image analysis and implementation as FSL.] in order to reorient and rigidly register the images to MNI space, crop them and correct for field inhomogeneities. We then skull-stripped the images using the ROBEX algorithm [24][Robust brain extraction across datasets and comparison with publicly available methods]. Lastly, we resampled all images to a resolution of 1.3 mm 3 and nor- malised them to a range from -1 to 1. The final volumes had a size of 128x160x112 voxels."

"Data used in preparation of this article were obtained from the Alzheimers disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf"

Usage

Training

To train the WGAN on this task, cd into this repo's src root folder and execute:

$ python train.py

This script takes the following command line options:

  • dataset_root: the root directory where tha dataset is stored, default to '../dataset'

  • experiment: directory in where samples and models will be saved, default to '../samples'

  • batch_size: input batch size, default to 32

  • image_size: the height / width of the input image to network, default to 112

  • channels_number: input image channels, default to 1

  • num_filters_g: number of filters for the first layer of the generator, default to 16

  • num_filters_d: number of filters for the first layer of the discriminator, default to 16

  • nepochs: number of epochs to train for, default to 1000

  • d_iters: number of discriminator iterations per each generator iter, default to 5

  • learning_rate_g: learning rate for generator, default to 1e-3

  • learning_rate_d: learning rate for discriminator, default to 1e-3

  • beta1: beta1 for adam. default to 0.0

  • cuda: enables cuda (store True)

  • manual_seed: input for the manual seeds initializations, default to 7

Running the command without arguments will train the models with the default hyperparamters values (producing results shown above).

Models

We ported all models found in the original repository in PyTorch, you can find all implemented models here: https://github.com/orobix/Visual-Feature-Attribution-Using-Wasserstein-GANs-Pytorch/tree/master/src/models

Useful repositories and code

  • vagan-code: Reposiory for the reference paper from its authors

  • ganhacks: Starter from "How to Train a GAN?" at NIPS2016

  • WassersteinGAN: Code accompanying the paper "Wasserstein GAN"

  • wgan-gp: Pytorch implementation of Paper "Improved Training of Wasserstein GANs".

  • c3d-pytorch: Model used as discriminator in the reference paper

  • Pytorch-UNet: Model used as genertator in this repository

  • dcgan: Model used as discriminator in this repository

.bib citation

cite the paper as follows (copied-pasted it from arxiv for you):

@article{DBLP:journals/corr/abs-1711-08998,
  author    = {Christian F. Baumgartner and
               Lisa M. Koch and
               Kerem Can Tezcan and
               Jia Xi Ang and
               Ender Konukoglu},
  title     = {Visual Feature Attribution using Wasserstein GANs},
  journal   = {CoRR},
  volume    = {abs/1711.08998},
  year      = {2017},
  url       = {http://arxiv.org/abs/1711.08998},
  archivePrefix = {arXiv},
  eprint    = {1711.08998},
  timestamp = {Sun, 03 Dec 2017 12:38:15 +0100},
  biburl    = {http://dblp.org/rec/bib/journals/corr/abs-1711-08998},
  bibsource = {dblp computer science bibliography, http://dblp.org}
}

License

This project is licensed under the MIT License

Copyright (c) 2018 Daniele E. Ciriello, Orobix Srl (www.orobix.com).

Owner
Orobix
Orobix
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
[ICCV2021] 3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds

3DVG-Transformer This repository is for the ICCV 2021 paper "3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds" Our method "3DV

22 Dec 11, 2022
A modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (prediction model)

ParallelFold Author: Bozitao Zhong This is a modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (p

Bozitao Zhong 77 Dec 22, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
Tooling for converting STAC metadata to ODC data model

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

Open Data Cube 65 Dec 20, 2022
DTCN SMP Challenge - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Expert Finding in Legal Community Question Answering

Expert Finding in Legal Community Question Answering Arian Askari, Suzan Verberne, and Gabriella Pasi. Expert Finding in Legal Community Question Answ

Arian Askari 3 Oct 31, 2022
Noether Networks: meta-learning useful conserved quantities

Noether Networks: meta-learning useful conserved quantities This repository contains the code necessary to reproduce experiments from "Noether Network

Dylan Doblar 33 Nov 23, 2022
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norén 21.8k Jan 09, 2023
LAMDA: Label Matching Deep Domain Adaptation

LAMDA: Label Matching Deep Domain Adaptation This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accep

Tuan Nguyen 9 Sep 06, 2022
NDE: Climate Modeling with Neural Diffusion Equation, ICDM'21

Climate Modeling with Neural Diffusion Equation Introduction This is the repository of our accepted ICDM 2021 paper "Climate Modeling with Neural Diff

Jeehyun Hwang 5 Dec 18, 2022
Code release for ICCV 2021 paper "Anticipative Video Transformer"

Anticipative Video Transformer Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT) [project page

Facebook Research 123 Dec 13, 2022
Learning High-Speed Flight in the Wild

Learning High-Speed Flight in the Wild This repo contains the code associated to the paper Learning Agile Flight in the Wild. For more information, pl

Robotics and Perception Group 391 Dec 29, 2022
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
Decision Transformer: A brand new Offline RL Pattern

DecisionTransformer_StepbyStep Intro Decision Transformer: A brand new Offline RL Pattern. 这是关于NeurIPS 2021 热门论文Decision Transformer的复现。 👍 原文地址: Deci

Irving 14 Nov 22, 2022
Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation"

EgoNet Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation". This repo inclu

Shichao Li 138 Dec 09, 2022
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning

Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

Mathieu Godbout 1 Nov 19, 2021
Trafffic prediction analysis using hybrid models - Machine Learning

Hybrid Machine learning Model Clone the Repository Create a new Directory as assests and download the model from the below link Model Link To Start th

1 Feb 08, 2022
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022