(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Overview

Realistic evaluation of transductive few-shot learning

Introduction

This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evaluation of transductive few-shot learning". This is a framework that regroups all methods evaluated in our paper except for SIB and LR-ICI. Results provided in the paper can be reproduced with this repo. Code was developed under python 3.8.3 and pytorch 1.4.0.

1. Getting started

1.1 Quick installation (recommended) (Download datasets and models)

To download datasets and pre-trained models (checkpoints), follow instructions 1.1.1 to 1.1.2 of NeurIPS 2020 paper "TIM: Transductive Information Maximization" public implementation (https://github.com/mboudiaf/TIM)

1.1.1 Place datasets

Make sure to place the downloaded datasets (data/ folder) at the root of the directory.

1.1.2 Place models

Make sure to place the downloaded pre-trained models (checkpoints/ folder) at the root of the directory.

1.2 Manual installation

Follow instruction 1.2 of NeurIPS 2020 paper "TIM: Transductive Information Maximization" public implementation (https://github.com/mboudiaf/TIM) if facing issues with previous steps. Make sure to place data/ and checkpoints/ folders at the root of the directory.

2. Requirements

To install requirements:

conda create --name <env> --file requirements.txt

Where <env> is the name of your environment

3. Reproducing the main results

Before anything, activate the environment:

source activate <env>

3.1 Table 1 and 2 results in paper

Evaluation in a 5-shot scenario on mini-Imagenet using RN-18 as backbone (Table 1. in paper)

Method 1-shot 5-shot 10-shot 20-shot
SimpleShot 63.0 80.1 84.0 86.1
PT-MAP 60.1 (↓16.8) 67.1 (↓18.2) 68.8 (↓18.0) 70.4 (↓17.4)
LaplacianShot 65.4 (↓4.7) 81.6 (↓0.5) 84.1 (↓0.2) 86.0 (↑0.5)
BDCSPN 67.0 (↓2.4) 80.2 (↓1.8) 82.7 (↓1.4) 84.6 (↓1.1)
TIM 67.3 (↓4.5) 79.8 (↓4.1) 82.3 (↓3.8) 84.2 (↓3.7)
α-TIM 67.4 82.5 85.9 87.9

To reproduce the results from Table 1. and 2. in the paper, from the root of the directory execute this python command.

python3 -m src.main --base_config <path_to_base_config_file> --method_config <path_to_method_config_file> 

The <path_to_base_config_file> follows this hierarchy:

config/<balanced or dirichlet>/base_config/<resnet18 or wideres>/<mini or tiered or cub>/base_config.yaml

The <path_to_method_config_file> follows this hierarchy:

config/<balanced or dirichlet>/methods_config/<alpha_tim or baseline or baseline_pp or bdcspn or entropy_min or laplacianshot or protonet or pt_map or simpleshot or tim>.yaml

For instance, if you want to reproduce the results in the balanced setting on mini-Imagenet, using ResNet-18, with alpha-TIM method go to the root of the directory and execute:

python3 -m src.main --base_config config/balanced/base_config/resnet18/mini/base_config.yaml --method_config config/balanced/methods_config/alpha_tim.yaml

If you want to reproduce the results in the randomly balanced setting on mini-Imagenet, using ResNet-18, with alpha-TIM method go to the root of the directory and execute:

python3 -m src.main --base_config config/dirichlet/base_config/resnet18/mini/base_config.yaml --method_config config/dirichlet/methods_config/alpha_tim.yaml

Reusable data sampler module

One of our main contribution is our realistic task sampling method following Dirichlet's distribution. plot

Our realistic sampler can be found in sampler.py file. The sampler has been implemented following Pytorch's norms and in a way that it can be easily reused and integrated in other projects.

The following notebook exemple_realistic_sampler.ipynb is an exemple that shows how to initialize and use our realistic category sampler.

Contact

For further questions or details, reach out to Olivier Veilleux ([email protected])

Acknowledgements

Special thanks to the authors of NeurIPS 2020 paper "TIM: Transductive Information Maximization" (TIM) (https://github.com/mboudiaf/TIM) for publicly sharing their pre-trained models and their source code from which this repo was inspired from.

Owner
Olivier Veilleux
Olivier Veilleux
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval project page | arXiv | webvid-data Repository containing the code,

225 Dec 25, 2022
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

Kent Sommer 297 Dec 26, 2022
COLMAP - Structure-from-Motion and Multi-View Stereo

COLMAP About COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline with a graphical and command-line interface.

4.7k Jan 07, 2023
The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

9 Nov 14, 2022
The code of “Similarity Reasoning and Filtration for Image-Text Matching” [AAAI2021]

SGRAF PyTorch implementation for AAAI2021 paper of “Similarity Reasoning and Filtration for Image-Text Matching”. It is built on top of the SCAN and C

Ronnie_IIAU 149 Dec 22, 2022
An ML & Correlation platform for transforming disparate data points of interest into usable intelligence.

SSIDprobeCollector An ML & Correlation platform for transforming disparate data points of interest into usable intelligence. At a High level the platf

Bill Reyor 1 Jan 30, 2022
YOLOv5 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and e

Ultralytics 34.1k Dec 31, 2022
The implementation of FOLD-R++ algorithm

FOLD-R-PP The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task. Inst

13 Dec 23, 2022
KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

IELab@ Korea University 74 Dec 28, 2022
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
Intro-to-dl - Resources for "Introduction to Deep Learning" course.

Introduction to Deep Learning course resources https://www.coursera.org/learn/intro-to-deep-learning Running on Google Colab (tested for all weeks) Go

Advanced Machine Learning specialisation by HSE 761 Dec 24, 2022
Image-retrieval-baseline - MUGE Multimodal Retrieval Baseline

MUGE Multimodal Retrieval Baseline This repo is implemented based on the open_cl

47 Dec 16, 2022
Implementation of paper "Graph Condensation for Graph Neural Networks"

GCond A PyTorch implementation of paper "Graph Condensation for Graph Neural Networks" Code will be released soon. Stay tuned :) Abstract We propose a

Wei Jin 66 Dec 04, 2022
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Jake Tae 5 Jan 27, 2022
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022
Deep Surface Reconstruction from Point Clouds with Visibility Information

Data, code and pretrained models for the paper Deep Surface Reconstruction from Point Clouds with Visibility Information.

Raphael Sulzer 23 Jan 04, 2023
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022
Official codebase used to develop Vision Transformer, MLP-Mixer, LiT and more.

Big Vision This codebase is designed for training large-scale vision models on Cloud TPU VMs. It is based on Jax/Flax libraries, and uses tf.data and

Google Research 701 Jan 03, 2023