Code for Paper Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning

Overview

Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning

(c) Tianyu Han and Daniel Truhn, RWTH Aachen University, 2021

About

What's included in this Repo

The repository includes the codes for data / label preparation and inferencing the future knee radiograph, training and testing the baseline classifier and also the links to the pre-trained generative model.

Focus of the current work

Osteoarthritis (OA) is the most common joint disorder in the world affecting 10% of men and 18% of women over 60 years of age. In this paper, we present an unsupervised learning scheme to predict the future image appearance of patients at recurring visits.

By exploring the latent temporal trajectory based on knee radiographs, our system predicts the risk of accelerated progression towards OA and surpasses its supervised counterpart. We demonstrate this paradigm with seven radiologists who were tasked to predict which patients will undergo a rapid progression.

Requirements

pytorch 1.8.1
tensorboard 2.5.0
numpy 1.20.3
scipy 1.6.2
scikit-image 0.18.1
pandas
tqdm
glob
pickle5
  • StyleGAN2-ADA-Pytorch
    This repository is an official reimplementation of StyleGAN2-ADA in PyTorch, focusing on correctness, performance, and compatibility.
  • KNEE Localization
    The repository includes the codes for training and testing, annotations for the OAI dataset and also the links to the pre-trained models.
  • Robust ResNet classifier
    The repository contains codes for developing robust ResNet classifier with a superior performance and interpretability.

How to predict the future state of a knee

Preparing the training data and labels

Download all available OAI and MOST images from https://nda.nih.gov/oai/ and https://most.ucsf.edu/. The access to the images is free and painless. You just need to register and provide the information about yourself and agree with the terms of data use. Besides, please also download the label files named Semi-Quant_Scoring_SAS and MOSTV01235XRAY.txt from OAI and MOST, separately.

Following the repo of KNEE Localization, we utilized a pre-trained Hourglass network and extracted 52,981 and 20,158 (separated left or right) knee ROI (256x256) radiographs from both OAI and MOST datasets. We further extract the semi-quantitative assessment Kellgren-Lawrence Score (KLS) from the labels files above. To better relate imaging and tabular data together, in OAI dataset, we name the knee radiographs using ID_BARCDBU_DATE_SIDE.png, e.g., 9927360_02160601_20070629_l.png. For instance, to generate the KLS label file (most.csv) of the MOST dataset, one can run:

python kls.py

Training a StyleGAN2 model on radiological data

Follow the official repo StyleGAN2, datasets are stored as uncompressed ZIP archives containing uncompressed PNG files. Our datasets can be created from a folder containing radiograph images; see python dataset_tool.py --help for more information. In the auto configuration, training a OAI GAN boils down to:

python train.py --outdir=~/training-runs --data=~/OAI_data.zip --gpus=2

The total training time on 2 Titan RTX cards with a resolution of 256x256 takes around 4 days to finish. The best GAN model of our experiment can be downloaded at here.

Projecting training radiographs to latent space

To find the matching latent vector for a given training set, run:

python projector.py --outdir=~/pro_out --target=~/training_set/ --network=checkpoint.pkl

The function multi_projection() within the script will generate a dictionary contains pairs of image name and its corresponding latent code and individual projection folders.

Synthesize future radiograph

  • require: A pre-trained network G, test dataframe path (contains test file names), and individual projection folders (OAI training set). To predict the baseline radiographs within the test dataframe, just run:
python prog_w.py --network=checkpoint.pkl --frame=test.csv --pfolder=~/pro_out/ 

Estimating the risk of OA progression

In this study, we have the ability to predict the morphological appearance of the radiograph at a future time point and compute the risk based on the above synthesized state. We used an adversarially trained ResNet model that can correctly classify the KLS of the input knee radiograph.

To generate the ROC curve of our model, run:

python risk.py --ytrue=~/y_true.npy --ystd=~/baseline/pred/y_pred.npy --ybase=~/kls_cls/pred/ypred.npy --yfinal=~/kls_cls/pred/ypred_.npy --df=~/oai.csv

Baseline classifier

To compare what is achievable with supervised learning based on the existing dataset, we finetune a ResNet-50 classifier pretrained on ImageNet that tries to distinguish fast progressors based on baseline radiographs in a supervised end-to-end manner. The output probability of such a classifier is based on baseline radiographs only. To train the classifier, after putting the label files to the base_classifier/label folder, one can run:

cd base_classifier/
python train.py --todo train --data_root ../Xray/dataset_oai/imgs/ --affix std --pretrain True --batch_size 32

To test, just run:

cd base_classifier/
python train.py --todo test --data_root ../Xray/dataset_oai/imgs/ --batch_size 1

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Citation

@misc{han2021predicting,
      title={Predicting Osteoarthritis Progression in Radiographs via Unsupervised Representation Learning}, 
      author={Tianyu Han and Jakob Nikolas Kather and Federico Pedersoli and Markus Zimmermann and Sebastian Keil and Maximilian Schulze-Hagen and Marc Terwoelbeck and Peter Isfort and Christoph Haarburger and Fabian Kiessling and Volkmar Schulz and Christiane Kuhl and Sven Nebelung and Daniel Truhn},
      year={2021},
      eprint={2111.11439},
      archivePrefix={arXiv},
      primaryClass={eess.IV}
}

Acknowledgments

You might also like...
This repo is a PyTorch implementation for Paper
This repo is a PyTorch implementation for Paper "Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds"

Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds This repository is a PyTorch implementation for paper: Uns

Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Ca

[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning This is the official PyTorch implementation for UniMoCo pape

[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

A PyTorch implementation of the paper
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Releases(v1.0)
Owner
Tianyu Han
Tianyu Han
Deeper insights into graph convolutional networks for semi-supervised learning

deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem

Davidham3 17 Dec 16, 2022
A toy compiler that can convert Python scripts to pickle bytecode 🥒

Pickora 🐰 A small compiler that can convert Python scripts to pickle bytecode. Requirements Python 3.8+ No third-party modules are required. Usage us

ꌗᖘ꒒ꀤ꓄꒒ꀤꈤꍟ 68 Jan 04, 2023
Flaxformer: transformer architectures in JAX/Flax

Flaxformer is a transformer library for primarily NLP and multimodal research at Google.

Google 116 Jan 05, 2023
Dyalog-apl-docset - Dyalog APL Dash Docset Generator

Dyalog APL Dash Docset Generator o alasa e kili sona kepeken tenpo lili a A Dash

Maciej Goszczycki 1 Jan 10, 2022
PyTorch Implementation of Realtime Multi-Person Pose Estimation project.

PyTorch Realtime Multi-Person Pose Estimation This is a pytorch version of Realtime_Multi-Person_Pose_Estimation, origin code is here Realtime_Multi-P

Dave Fang 157 Nov 12, 2022
A curated list of neural network pruning resources.

A curated list of neural network pruning and related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers and Awesome-NAS.

Yang He 1.7k Jan 09, 2023
Deep Learning segmentation suite designed for 2D microscopy image segmentation

Deep Learning segmentation suite dessigned for 2D microscopy image segmentation This repository provides researchers with a code to try different enco

7 Nov 03, 2022
A simple interface for editing natural photos with generative neural networks.

Neural Photo Editor A simple interface for editing natural photos with generative neural networks. This repository contains code for the paper "Neural

Andy Brock 2.1k Dec 29, 2022
Semi-Autoregressive Transformer for Image Captioning

Semi-Autoregressive Transformer for Image Captioning Requirements Python 3.6 Pytorch 1.6 Prepare data Please use git clone --recurse-submodules to clo

YE Zhou 23 Dec 09, 2022
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
PyTorch module to use OpenFace's nn4.small2.v1.t7 model

OpenFace for Pytorch Disclaimer: This codes require the input face-images that are aligned and cropped in the same way of the original OpenFace. * I m

Pete Tae-hoon Kim 176 Dec 12, 2022
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021
Automatic detection and classification of Covid severity degree in LUS (lung ultrasound) scans

Final-Project Final project in the Technion, Biomedical faculty, by Mor Ventura, Dekel Brav & Omri Magen. Subproject 1: Automatic Detection of LUS Cha

Mor Ventura 1 Dec 18, 2021
Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021)

Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021) This repository is for the following paper: "Investigating Attention

52 Nov 19, 2022
Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of images as "pixels"

picinpics Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of

RodrigoCMoraes 1 Oct 24, 2021
Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Philipp Erler 329 Jan 06, 2023
Implementation of the master's thesis "Temporal copying and local hallucination for video inpainting".

Temporal copying and local hallucination for video inpainting This repository contains the implementation of my master's thesis "Temporal copying and

David Álvarez de la Torre 1 Dec 02, 2022
Exploring Simple Siamese Representation Learning

G-SimSiam A PyTorch implementation which refers to repo for the paper Exploring Simple Siamese Representation Learning by Xinlei Chen & Kaiming He Add

zhuyun 1 Dec 19, 2021
《Lerning n Intrinsic Grment Spce for Interctive Authoring of Grment Animtion》

Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation Overview This is the demo code for training a motion invariant enco

YuanBo 213 Dec 14, 2022