Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".

Overview

No-Transaction Band Network:
A Neural Network Architecture for Efficient Deep Hedging

Open In Colab

Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".

Hedging and pricing financial derivatives while taking into account transaction costs is a tough task. Since the hedging optimization is computationally expensive or even inaccessible, risk premiums of derivatives are often overpriced. This problem prevents the liquid offering of financial derivatives.

Our proposal, "No-Transaction Band Network", enables precise hedging with much fewer simulations. This improvement leads to the offering of cheaper risk premiums and thus liquidizes the derivative market. We believe that our proposal brings the data-driven derivative business via "Deep Hedging" much closer to practical applications.

Summary

  • Deep Hedging is a deep learning-based framework to hedge financial derivatives.
  • However, a hedging strategy is hard to train due to the action dependence, i.e., an appropriate hedging action at the next step depends on the current action.
  • We propose a "No-Transaction Band Network" to overcome this issue.
  • This network circumvents the action-dependence and facilitates quick and precise hedging.

Motivation and Result

Hedging financial derivatives (exotic options in particular) in the presence of transaction cost is a hard task.

In the absence of transaction cost, the perfect hedge is accessible based on the Black-Scholes model. The real market, in contrast, always involves transaction cost and thereby makes hedging optimization much more challenging. Since the analytic formulas (such as the Black-Scholes formula of European option) are no longer available in such a market, human traders may hedge and then price derivatives based on their experiences.

Deep Hedging is a ground-breaking framework to automate and optimize such operations. In this framework, a neural network is trained to hedge derivatives so that it minimizes a proper risk measure. However, training in deep hedging suffers difficulty of action dependence since an appropriate action at the next step depends on the current action.

So, we propose "No-Transaction Band Network" for efficient deep hedging. This architecture circumvents the complication to facilitate quick training and better hedging.

loss_lookback

The learning histories above demonstrate that the no-transaction band network can be trained much quicker than the ordinary feed-forward network (See our paper for details).

price_lookback

The figure above plots the derivative price (technically derivative price spreads, which are prices subtracted by that without transaction cost) as a function of the transaction cost. The no-transaction-band network attains cheaper prices than the ordinary network and an approximate analytic formula.

Proposed Architecture: No-Transaction Band Network

The following figures show the schematic diagrams of the neural network which was originally proposed in Deep Hedging (left) and the no-transaction band network (right).

nn

  • The original network:
    • The input of the neural network uses the current hedge ratio (δ_ti) as well as other information (I_ti).
    • Since the input includes the current action δ_ti, this network suffers the complication of action-dependence.
  • The no-transaction band network:
    • This architecture computes "no-transaction band" [b_l, b_u] by a neural network and then gets the next hedge ratio by clamping the current hedge ratio inside this band.
    • Since the input of the neural network does not use the current action, this architecture can circumvent the action-dependence and facilitate training.

Give it a Try!

Open In Colab

You can try out the efficacy of No-Transaction Band Network on a Jupyter Notebook: main.ipynb.

As you can see there, the no-transaction-band can be implemented by simply adding one special layer to an arbitrary neural network.

A comprehensive library for Deep Hedging, pfhedge, is available on PyPI.

References

  • Shota Imaki, Kentaro Imajo, Katsuya Ito, Kentaro Minami and Kei Nakagawa, "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging". arXiv:2103.01775 [q-fin.CP].
  • 今木翔太, 今城健太郎, 伊藤克哉, 南賢太郎, 中川慧, "効率的な Deep Hedging のためのニューラルネットワーク構造", 人工知能学 金融情報学研究会(SIG-FIN)第 26 回研究会.
  • Hans Bühler, Lukas Gonon, Josef Teichmann and Ben Wood, "Deep hedging". Quantitative Finance, 2019, 19, 1271–1291. arXiv:1609.05213 [q-fin.CP].
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs at the moment, Cycles and Arnold supported

GafferHaven Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs are supported at the moment, in Cycles and Arnold lights.

Jakub Vondra 6 Jan 26, 2022
这是一个mobilenet-yolov4-lite的库,把yolov4主干网络修改成了mobilenet,修改了Panet的卷积组成,使参数量大幅度缩小。

YOLOV4:You Only Look Once目标检测模型-修改mobilenet系列主干网络-在Keras当中的实现 2021年2月8日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map一般可以得到提升。

Bubbliiiing 65 Dec 01, 2022
Where2Act: From Pixels to Actions for Articulated 3D Objects

Where2Act: From Pixels to Actions for Articulated 3D Objects The Proposed Where2Act Task. Given as input an articulated 3D object, we learn to propose

Kaichun Mo 69 Nov 28, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Jan 07, 2023
The codes I made while I practiced various TensorFlow examples

TensorFlow_Exercises The codes I made while I practiced various TensorFlow examples About the codes I didn't create these codes by myself, but re-crea

Terry Taewoong Um 614 Dec 08, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks

Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks This is the official code for DyReg model inroduced in Discovering Dyna

Bitdefender Machine Learning 11 Nov 08, 2022
FS-Mol: A Few-Shot Learning Dataset of Molecules

FS-Mol is A Few-Shot Learning Dataset of Molecules, containing molecular compounds with measurements of activity against a variety of protein targets. The dataset is presented with a model evaluation

Microsoft 114 Dec 15, 2022
StyleSwin: Transformer-based GAN for High-resolution Image Generation

StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang

Microsoft 349 Dec 28, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our n

58 Dec 23, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Figure: Shape-Accurate 3D-Aware Image Synthesis. A Shading-Guid

Xingang Pan 115 Dec 18, 2022
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022
Roger Labbe 13k Dec 29, 2022
True Few-Shot Learning with Language Models

This codebase supports using language models (LMs) for true few-shot learning: learning to perform a task using a limited number of examples from a single task distribution.

Ethan Perez 124 Jan 04, 2023
GND-Nets (Graph Neural Diffusion Networks) in TensorFlow.

GNDC For submission to IEEE TKDE. Overview Here we provide the implementation of GND-Nets (Graph Neural Diffusion Networks) in TensorFlow. The reposit

Wei Ye 3 Aug 08, 2022
A simple and extensible library to create Bayesian Neural Network layers on PyTorch.

Blitz - Bayesian Layers in Torch Zoo BLiTZ is a simple and extensible library to create Bayesian Neural Network Layers (based on whats proposed in Wei

Pi Esposito 722 Jan 08, 2023
Tensorflow 2.x implementation of Panoramic BlitzNet for object detection and semantic segmentation on indoor panoramic images.

Deep neural network for object detection and semantic segmentation on indoor panoramic images. The implementation is based on the papers:

Alejandro de Nova Guerrero 9 Nov 24, 2022