Code for "Causal autoregressive flows" - AISTATS, 2021

Related tags

Deep Learningcarefl
Overview

Code for "Causal Autoregressive Flow"

This repository contains code to run and reproduce experiments presented in Causal Autoregressive Flows, presented at the 24th International Conference on Artificial Intelligence and Statistics (AISTATS 2021).

The repository originally contained the code to reproduce results presented in Autoregressive flow-based causal discovery and inference, presented at the 2nd ICML workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models (2020). Switch to the workshop branch to access this version of the code.

Dependencies

This project was tested with the following versions:

  • python 3.7
  • numpy 1.18.2
  • pytorch 1.4
  • scikit-learn 0.22.2
  • scipy 1.4.1
  • matplotlib 3.2.1
  • seaborn 0.10

This project uses normalizing flows implementation from this repository.

Usage

The main.py script is the main gateway to reproduce the experiments detailed in the mansucript, and is straightforward to use. Type python main.py -h to learn about the options.

Hyperparameters can be changed through the configuration files under configs/. The main.py is setup to read the corresponding config file for each experiment, but this can be overwritten using the -y or --config flag.

The results are saved under the run/ folder. This can be changed using the --run flag.

Running the main.py script will only produce data for a single set of parameters, which are specified in the config file. These parameters include the dataset type, the number of simulations, the algorithm, the number of observations, the architectural parameters for the neural networks (number of layers, dimension of the hidden layer...), etc...

To reproduce the figures in the manuscript, the script should be run multiple time for each different combination of parameters, to generate the data used for the plots. Convience scripts are provided to do this in parallel using SLURM (see below). These make use of certain debugging flags that overwrite certain fields in the config file.

Finally, the flow.scale field in the config files is used to switch from CAREFL to CAREFL-NS by setting it to false.

Examples

Experiments where run using the SLURM system. The slurm_main_cpu.sbatch is used to run jobs on CPU, and slurm_main.sbatch for the GPU.

To run simulations in parallel:

for SIZE in 25 50 75 100 150 250 500; do
    for ALGO in lrhyv reci anm; do
        for DSET in linear hoyer2009 nueralnet_l1 mnm veryhighdim; do
            sbatch slurm_main_cpu.sbatch -s -m $DSET -a $ALGO -n $SIZE
        done
    done
done
ALGO=carefl
for SIZE in 25 50 75 100 150 250 500; do
    for DSET in linear hoyer2009 nueralnet_l1 mnm veryhighdim; do
        sbatch slurm_main_cpu.sbatch -s -m $DSET -a $ALGO -n $SIZE
    done
done

To run interventions:

for SIZE in 250 500 750 1000 1250 1500 2000 2500; do
    for ALGO in gp linear; do
        sbatch slurm_main_cpu.sbatch -i -a $ALGO -n $SIZE
    done
done
ALGO=carefl
for SIZE in 250 500 750 1000 1250 1500 2000 2500; do
    sbatch slurm_main_cpu.sbatch -i -a $ALGO -n $SIZE
done

To run arrow of time on EEG data:

for ALGO in LRHyv RECI ANM; do
    for IDX in {0..117}; do
        sbatch slurm_main_cpu.sbatch -e -n $IDX -a $ALGO --n-sims 11
    done
done
ALGO=carefl
for IDX in {0..117}; do
    sbatch slurm_main.sbatch -e -n $IDX -a $ALGO --n-sims 11
done

To run interventions on fMRI data (this experiment outputs to standard output):

python main.py -f

To run pairs:

for IDX in {1..108}; do
    sbatch slurm_main_cpu.sbatch -p -n $IDX --n-sims 10
done

Reference

If you find this code helpful/inspiring for your research, we would be grateful if you cite the following:

@inproceedings{khemakhem2021causal,
  title = { Causal Autoregressive Flows },
  author = {Khemakhem, Ilyes and Monti, Ricardo and Leech, Robert and Hyvarinen, Aapo},
  booktitle = {Proceedings of The 24th International Conference on Artificial Intelligence and Statistics},
  pages = {3520--3528},
  year = {2021},
  editor = {Banerjee, Arindam and Fukumizu, Kenji},
  volume = {130},
  series = {Proceedings of Machine Learning Research},
  month = {13--15 Apr},
  publisher = {PMLR}
}

License

A full copy of the license can be found here.

MIT License

Copyright (c) 2020 Ilyes Khemakhem and Ricardo Pio Monti

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Owner
Ricardo Pio Monti
Ricardo Pio Monti
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
Multivariate Boosted TRee

Multivariate Boosted TRee What is MBTR MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can h

SUPSI-DACD-ISAAC 61 Dec 19, 2022
【ACMMM 2021】DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning

DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning (ACMMM 2021) Overview We release the code of the DSANet (Dynamic S

Wenhao Wu 46 Dec 27, 2022
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
Labels4Free: Unsupervised Segmentation using StyleGAN

Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet

70 Dec 23, 2022
PyTorch implementation of 'Gen-LaneNet: a generalized and scalable approach for 3D lane detection'

(pytorch) Gen-LaneNet: a generalized and scalable approach for 3D lane detection Introduction This is a pytorch implementation of Gen-LaneNet, which p

Yuliang Guo 233 Jan 06, 2023
Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures.

NLP_0-project Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures1. We are a "democratic" and c

3 Mar 16, 2022
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
⚓ Eurybia monitor model drift over time and securize model deployment with data validation

View Demo · Documentation · Medium article 🔍 Overview Eurybia is a Python library which aims to help in : Detecting data drift and model drift Valida

MAIF 172 Dec 27, 2022
Code for ICML 2021 paper: How could Neural Networks understand Programs?

OSCAR This repository contains the source code of our ICML 2021 paper How could Neural Networks understand Programs?. Environment Run following comman

Dinglan Peng 115 Dec 17, 2022
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
Implementation of a Transformer, but completely in Triton

Transformer in Triton (wip) Implementation of a Transformer, but completely in Triton. I'm completely new to lower-level neural net code, so this repo

Phil Wang 152 Dec 22, 2022
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
Implementation of ECCV20 paper: the devil is in classification: a simple framework for long-tail object detection and instance segmentation

Implementation of our ECCV 2020 paper The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation This repo contains code o

twang 98 Sep 17, 2022
Collection of sports betting AI tools.

sports-betting sports-betting is a collection of tools that makes it easy to create machine learning models for sports betting and evaluate their perf

George Douzas 109 Dec 31, 2022
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
Cross-Task Consistency Learning Framework for Multi-Task Learning

Cross-Task Consistency Learning Framework for Multi-Task Learning Tested on numpy(v1.19.1) opencv-python(v4.4.0.42) torch(v1.7.0) torchvision(v0.8.0)

Aki Nakano 2 Jan 08, 2022
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022