A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

Overview

What

Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun 23, 2019)

Why

  • OpenCV's DNN module, as of today, does not support NVIDIA GPUs. There is a GSOC WIP that will change this. Till then, this library is what I needed.

  • I used Alexy's fork because he keeps it more updated with required changes (like using std++-11 etc.).
    W

  • Other excellent libraries such as pyyolo, Yolo34Py did not work for me with CUDA 10.1 and OpenCV 4.1. They all had compiler issues

How to use this library

By dead simple, I mean dead simple.

  • This module doesn't bother cloning/building darknet. Build it whichever way you want, and simply make libdarknet.so accessible to this module.

  • Modify cfg/coco.data names= to point to where you have the labels (typically coco.names)

  • See example.py

Sample:

import simpleyolo.simpleYolo as yolo

configPath='./cfg/yolov3.cfg'
weightPath='./yolov3.weights'
metaPath='./cfg/coco.data'
imagePath='data/dog.jpg'

# initialize
m = yolo.SimpleYolo(configPath=configPath, 
                    weightPath=weightPath, 
                    metaPath=metaPath, 
                    darknetLib='./libdarknet_gpu.so', 
                    useGPU=True)
print ('detecting...')
detections = m.detect(imagePath)
print (detections)

When to use/not to use

  • Use this library if you want GPU support for YoloV3.
  • DON'T USE THIS LIBRARY if you want CPU support. It will work, but OpenCV's DNN module for YoloV3 is around 10x faster than using darknet directly. Really.
  • On CPU, Intel Xeon 32GB RAM, 4 core, 3.1GHz, OpenCV DNN YoloV3 with blas/atlas takes ~2-4s
  • On CPU, Intel Xeon 32GB RAM, 4 core, 3.1GHz, darkneti YoloV3 takes ~45s (gaah!)
  • BUT, on GPU, NVIDIA GeForce 1050 Ti, 4GB, same CPU, darknet YoloV3 takes 91ms (woot!)

If you really want to know how to get darknet working with OpenCV 4.1

Assuming you have built/installed CUDA/cuDNN and optionally OpenCV 4.1:

git clone https://github.com/AlexeyAB/darknet
cd darknet

Edit the Makefile, set:
GPU=1
CUDNN=1
LIBSO=1

If you want darknet to use OPENCV (not necessary), also set

OPENCV=1 

Notes:

  • You will make to change the Makefile to change pkg-config --libs opencv to pkg-config --libs opencv4 (2 instances). This will not be needed after Alexy fixes this issue

  • The above will only work if you previously compiled OpenCV 4+ with OPENCV_GENERATE_PKGCONFIG=ON and then copied the generated pc file like so: sudo cp unix-install/opencv4.pc /usr/lib/pkgconfig/

Pretty, please, how do we build OpenCV 4.1 with CUDA 10.1?

Assuming you have built/installed CUDA/cuDNN:

git clone https://github.com/opencv/opencv
git clone https://github.com/opencv/opencv_contrib
cd opencv
mkdir build

cmake -D CMAKE_BUILD_TYPE=RELEASE \
        -D CMAKE_INSTALL_PREFIX=/usr/local \
        -D PYTHON_DEFAULT_EXECUTABLE=$(which python3) \
        -D INSTALL_PYTHON_EXAMPLES=OFF \
        -D INSTALL_C_EXAMPLES=OFF \
        -D OPENCV_ENABLE_NONFREE=ON \
        -D OPENCV_EXTRA_MODULES_PATH=/home/pp/opencv_contrib/modules \
        -D BUILD_EXAMPLES=OFF \
        -D WITH_CUDA=ON \
        -D ENABLE_FAST_MATH=ON \
        -D CUDA_FAST_MATH=ON \
        -D WITH_CUBLAS=ON \
        -D WITH_OPENCL=ON \
        -D BUILD_opencv_cudacodec=OFF \
        -D BUILD_opencv_world=OFF \
        -D WITH_NVCUVID=OFF \
        -D WITH_OPENGL=ON \
        -D BUILD_opencv_python3=ON \
        -D OPENCV_GENERATE_PKGCONFIG=ON \
        ..
make -j$(nproc)
sudo make install

# don't forget this, for darknet and other libs to find opencv4 later
sudo cp unix-install/opencv4.pc /usr/lib/pkgconfig/

Pretty pretty please, how do I build CUDA 10.1 and nvidia drivers?

Maybe later.

Owner
Pliable Pixels
I code like a Kindergartner
Pliable Pixels
A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

A Simple and Versatile Framework for Object Detection and Instance Recognition

SimpleDet - A Simple and Versatile Framework for Object Detection and Instance Recognition Major Features FP16 training for memory saving and up to 2.

TuSimple 3k Dec 12, 2022
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham

61 Dec 26, 2022
pytorch implementation of dftd2 & dftd3

torch-dftd pytorch implementation of dftd2 [1] & dftd3 [2, 3] Install # Install from pypi pip install torch-dftd # Install from source (for developer

33 Nov 28, 2022
Implementation of the Paper: "Parameterized Hypercomplex Graph Neural Networks for Graph Classification" by Tuan Le, Marco Bertolini, Frank Noé and Djork-Arné Clevert

Parameterized Hypercomplex Graph Neural Networks (PHC-GNNs) PHC-GNNs (Le et al., 2021): https://arxiv.org/abs/2103.16584 PHM Linear Layer Illustration

Bayer AG 26 Aug 11, 2022
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
Point-NeRF: Point-based Neural Radiance Fields

Point-NeRF: Point-based Neural Radiance Fields Project Sites | Paper | Primary c

Qiangeng Xu 662 Jan 01, 2023
Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer"

TSOD Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer" Usage For training, open train_test, run p

Jinming Su 2 Dec 23, 2021
Pytorch Implementation of PointNet and PointNet++++

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for PointNet and PointNet++ in pytorch. Update 2021/03/27: (1) Release p

Luigi Ariano 1 Nov 11, 2021
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻‍♂️

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
Generative Art Using Neural Visual Grammars and Dual Encoders

Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm

DeepMind 231 Jan 05, 2023
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
A deep learning model for style-specific music generation.

DeepJ: A model for style-specific music generation https://arxiv.org/abs/1801.00887 Abstract Recent advances in deep neural networks have enabled algo

Henry Mao 704 Nov 23, 2022
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023
A system used to detect whether a person is wearing a medical mask or not.

Mask_Detection_System A system used to detect whether a person is wearing a medical mask or not. To open the program, please follow these steps: Make

Mohamed Emad 0 Nov 17, 2022
I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining

I-SECRET This is the implementation of the MICCAI 2021 Paper "I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive con

13 Dec 02, 2022
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."

alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi

Victor Shepardson 78 Dec 08, 2022
The official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang Gong, Yi Ma. "Fully Convolutional Line Parsing." *.

F-Clip — Fully Convolutional Line Parsing This repository contains the official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang

Xili Dai 115 Dec 28, 2022