This project uses Template Matching technique for object detecting by detection of template image over base image.

Overview

Object Detection Project Using OpenCV

projectLogo

This project uses Template Matching technique for object detecting by detection the template image over base image.

REQUIREMENTS

  • Python python  

  • OpenCV   

pip install opencv-python
pip install Tkinter

📝 CODE EXPLANATION

Importing Differnt Libraries
import cv2
import tkinter as tk 
from tkinter import filedialog,messagebox
import os
import sys

Taking Image input using Tkinter

Base Image Input Template Image Input
Base Image Input Template Image Input

Taking User Input using TKinter

root = tk.Tk() 
root.withdraw() 
file_path_base = filedialog.askopenfilename(initialdir= os.getcwd(),title="Select Base Image: ")
file_path_temp= filedialog.askopenfilename(initialdir= os.getcwd(),title="Select Template Image: ")

Loading base image and template image using cv2.imread()

Input Image Template Image Result Image
Input Image
Template Image
Result Image
Input Image
Template Image
Result Image
Input Image
Template Image
Result Image
Input Image
Template Image
Result Image
try:
    img = cv2.imread(file_path_base)

cv2.cvtColor()method is used to convert an image from one color space to another. There are more than 150 color-space conversion methods available in OpenCV.

Syntax: cv2.cvtColor(image, code, dst, dstCn)

    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    template = cv2.imread(file_path_temp,0)

Getting the height and width of the template image using .shape method.

    h ,w = template.shape

Error dialogue box using Tkinter

error

except cv2.error:
   messagebox.showinfo("Warning!","No Image Found!")
   sys.exit(0)

cv2.matchTemplate is used to comapare images. It gives a 2D-array as output.

match = cv2.matchTemplate(img_gray,template,cv2.TM_CCOEFF_NORMED)
threshold = 0.99

cv2.minMaxLoc returns the top-left corner of the template position for the best match.

min_val, max_val, min_location, max_location = cv2.minMaxLoc(match)
location = max_location
font = cv2.FONT_HERSHEY_PLAIN

cv2.rectangle() method is used to draw a rectangle on any image.

Syntax: cv2.rectangle(image, start_point, end_point, color, thickness)

cv2.rectangle(img, location, (location[0] + w, location[1] + h), (0,0,255), 2)

cv2.putText() method is used to draw a text string on any image.

Syntax: cv2.putText(image, text, start_point, font, fontScale, color, thickness, lineType, bottomLeftOrigin)

cv2.putText(img,"Object Spotted.", (location[0]-40,location[1]-5),font , 1, (0,0,0),2)

  • cv2.imwrite() method is used to save an image to any storage device. This will save the image according to the specified format in current working directory.
  • cv2.imshow method is used to display an image in a window. The window automatically fits to the image size.

Syntax: cv2.imwrite(filename, image)

Syntax: cv2.imshow(window_name, image)

cv2.imwrite('images/result.jpg',img)
cv2.imshow('Results.jpg',img)

cv2.waitkey() allows you to wait for a specific time in milliseconds until you press any button on the keyword.

cv2.waitKey(0)

cv2.destroyAllWindows() method destroys all windows whenever any key is pressed.

cv2.destroyAllWindows()

📬 Contact

If you want to contact me, you can reach me through below handles.

@prrthamm   Pratham Bhatnagar

Owner
Pratham Bhatnagar
Computer Science Engineering student at SRM University. || Blockchain || ML Enthusiast || Open Source.
Pratham Bhatnagar
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution 📜 Technical report 🗨️ Presentation 🎉 Announcement 🛆Motion Prediction Channel Website 🛆

158 Jan 08, 2023
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning This is the implementation of the paper "Self-Promoted Prototype Refinement

Kai Zhu 78 Dec 02, 2022
Facial expression detector

A tensorflow convolutional neural network model to detect facial expressions.

Carlos Tardón Rubio 5 Apr 20, 2022
Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)

Joint-task Self-supervised Learning for Temporal Correspondence Project | Paper Overview Joint-task Self-supervised Learning for Temporal Corresponden

Sifei Liu 167 Dec 14, 2022
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Jan 05, 2023
Spatial Intention Maps for Multi-Agent Mobile Manipulation (ICRA 2021)

spatial-intention-maps This code release accompanies the following paper: Spatial Intention Maps for Multi-Agent Mobile Manipulation Jimmy Wu, Xingyua

Jimmy Wu 70 Jan 02, 2023
Source code for Acorn, the precision farming rover by Twisted Fields

Acorn precision farming rover This is the software repository for Acorn, the precision farming rover by Twisted Fields. For more information see twist

Twisted Fields 198 Jan 02, 2023
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

51 Dec 11, 2022
A Comparative Review of Recent Kinect-Based Action Recognition Algorithms (TIP2020, Matlab codes)

A Comparative Review of Recent Kinect-Based Action Recognition Algorithms This repo contains: the HDG implementation (Matlab codes) for 'Analysis and

Lei Wang 5 Oct 22, 2022
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
Applying curriculum to meta-learning for few shot classification

Curriculum Meta-Learning for Few-shot Classification We propose an adaptation of the curriculum training framework, applicable to state-of-the-art met

Stergiadis Manos 3 Oct 25, 2022
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021)

Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021) Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang, Hongyang Li, Qinhong Jia

Yunsong Zhou 51 Dec 14, 2022
🧑‍🔬 verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

RTK-PAD This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE T

6 Aug 01, 2022
This folder contains the implementation of the multi-relational attribute propagation algorithm.

MrAP This folder contains the implementation of the multi-relational attribute propagation algorithm. It requires the package pytorch-scatter. Please

6 Dec 06, 2022