Romanian Automatic Speech Recognition from the ROBIN project

Overview

RobinASR

This repository contains Robin's Automatic Speech Recognition (RobinASR) for the Romanian language based on the DeepSpeech2 architecture, together with a KenLM language model to imporve the transcriptions.

The pretrained text-to-speech model can be downloaded from here and the pretrained KenLM can be downloaded from here.

Also, make sure to visit:

Installation

Docker

  1. Download the pretrained text-to-speech model and the pretrained KenLM at the above links, and copy them in a models directory inside this repository.

  2. Build the docker image using the Dockerfile. Make sure that deepspeech_pytorch/configs/inference_config.py has the desired configuration.

docker build --tag RobinASR .
  1. Run the docker image.
docker run --gpus all -p 8888:8888 --net=host --ipc=host RobinASR

From Source

  1. You must have Python 3.6+ and PyTorch 1.5.1+ installed in your system. Also. Cuda 10.1+ is required if you want to use the (recommended) GPU version.

  2. Clone the repository and install its dependencies:

git clone https://github.com/racai-ai/RobinASR.git
cd RobinASR
pip3 install -r requirements.txt
pip3 install -e .
  1. Install Nvidia Apex:
git clone --recursive https://github.com/NVIDIA/apex.git
cd apex && pip install .
  1. If you want to use Beam Search and the KenLM language model, you must install CTCDecode:
git clone --recursive https://github.com/parlance/ctcdecode.git
cd ctcdecode && pip install .

Inference Server

Firstly, take a look at the configuration file in deepspeech_pytorch/configs/inference_config.py and make sure that the configuration meets your requirements. Then, run the following command:

python3 server.py

Train a New Model

You must create 3 csv manifest files (train, valid and test) that contain on each line the the path to a wav file and the path to its corresponding transcription, separated by commas:

path_to_wav1,path_to_txt1
path_to_wav2,path_to_txt2
path_to_wav3,path_to_txt3
...

Then you must modify correspondingly with your configuration the file located at deepspeech_pytorch/configs/train_config.py and start training with:

python train.py

Acknowledgments

We would like to thank Sean Narnen for making his DeepSpeech2 implementation publicly-available. We used a lot of his code in our implementation.

Cite

If you are using this repository, please cite the following paper as a thank you to the authors:

Avram, A.M., Păiș, V. and Tufis, D., 2020, October. Towards a Romanian end-to-end automatic speech recognition based on Deepspeech2. In Proc. Rom. Acad. Ser. A (Vol. 21, pp. 395-402).

or in BibTeX format:

@inproceedings{avram2020towards,
  title={Towards a Romanian end-to-end automatic speech recognition based on Deepspeech2},
  author={Avram, Andrei-Marius and Păiș, Vasile and Tufiș, Dan},
  booktitle={Proceedings of the Romanian Academy, Series A},
  pages={395--402},
  year={2020}
}
Owner
RACAI
Research Institute for Artificial Intelligence "Mihai Drăgănescu", Romanian Academy
RACAI
Official Pytorch implementation for "End2End Occluded Face Recognition by Masking Corrupted Features, TPAMI 2021"

End2End Occluded Face Recognition by Masking Corrupted Features This is the Pytorch implementation of our TPAMI 2021 paper End2End Occluded Face Recog

Haibo Qiu 25 Oct 31, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
Generative Art Using Neural Visual Grammars and Dual Encoders

Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm

DeepMind 231 Jan 05, 2023
Extracting knowledge graphs from language models as a diagnostic benchmark of model performance.

Interpreting Language Models Through Knowledge Graph Extraction Idea: How do we interpret what a language model learns at various stages of training?

EPFL Machine Learning and Optimization Laboratory 9 Oct 25, 2022
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis

This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis, accepted at ACMMM 2021.

Ziqi Yuan 10 Sep 30, 2022
NovelD: A Simple yet Effective Exploration Criterion

NovelD: A Simple yet Effective Exploration Criterion Intro This is an implementation of the method proposed in NovelD: A Simple yet Effective Explorat

29 Dec 05, 2022
Xi Dongbo 78 Nov 29, 2022
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI 🎉 YOLOv5算法(ver.6及ver.5)的Qt-GUI实现 🎉 Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 基于YOLOv5的v5版本和v6版本及Javacr大佬的UI逻辑进行编写

EricFang 12 Dec 28, 2022
Action Recognition for Self-Driving Cars

Action Recognition for Self-Driving Cars This repo contains the codes for the 2021 Fall semester project "Action Recognition for Self-Driving Cars" at

VITA lab at EPFL 3 Apr 07, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023
Tools for manipulating UVs in the Blender viewport.

UV Tool Suite for Blender A set of tools to make editing UVs easier in Blender. These tools can be accessed wither through the Kitfox - UV panel on th

35 Oct 29, 2022
PyTorch implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy

Anomaly Transformer in PyTorch This is an implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy. This pape

spencerbraun 160 Dec 19, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021

ACTOR Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021. Please visit our we

Mathis Petrovich 248 Dec 23, 2022
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Hong-Jia Chen 91 Dec 02, 2022
Learning Visual Words for Weakly-Supervised Semantic Segmentation

[IJCAI 2021] Learning Visual Words for Weakly-Supervised Semantic Segmentation Implementation of IJCAI 2021 paper Learning Visual Words for Weakly-Sup

Lixiang Ru 24 Oct 05, 2022
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Fraunhofer SCAI 10 Oct 11, 2022