simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

Overview

Summary

This simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset with several common and useful features:

  • Choose between two different neural network architectures
  • Make architectures parametrizable
  • Read input arguments from config file or command line
    • (command line arguments override config file ones)
  • Download FashionMNIST dataset if not already downloaded
  • Monitor training progress on the terminal and/or with TensorBoard logs
    • Accuracy, loss, confusion matrix

More details about FashionMNIST can be found here.

It may be useful as a starting point for people who are starting to learn about PyTorch and neural networks.

Prerequisites

We assume that most users will have a GPU driver correctly configured, although the script can also be run on the CPU.

The project should work with your preferred python environment, but I have only tested it with conda (MiniConda 3) local environments. To create a local environment for this project,

conda create --name simple_pytorch_example python=3.9

and then activate it with

conda activate simple_pytorch_example

Installation on Ubuntu Linux

(Tested on Ubuntu Linux Focal 20.04.3 LTS)

Go to the directory where you want to have the project, e.g.

cd Software

Clone the simple_pytorch_example github repository

git clone https://github.com/rcasero/simple_pytorch_example.git

Install the python dependencies

cd simple_pytorch_example
python setup.py install

train_simple_pytorch_example.py: Main script to train the neural network

You can run the script train_simple_pytorch_example.py as

./train_simple_pytorch_example.py [options]

or

python train_simple_pytorch_example.py [options]

Usage summary

usage: train_simple_pytorch_example.py [-h] [-c CONFIG_FILE] [-v] [--workdir DIR] [-d STR] [-e N] [-b N] [-l F] [--validation_ratio F] [-n STR] [--conv_out_features N [N ...]]
                                       [--conv_kernel_size N] [--maxpool_kernel_size N]

optional arguments:
  -h, --help            show this help message and exit
  -c CONFIG_FILE, --config CONFIG_FILE
                        config file path
  -v, --verbose         verbose output for debugging
  --workdir DIR         working directory to place data, logs, weights, etc subdirectories (def .)
  -d STR, --device STR  device to train on (def 'cuda', 'cpu')
  -e N, --epochs N      number of epochs for training (def 10)
  -b N, --batch_size N  batch size for training (def 64)
  -l F, --learning_rate F
                        learning rate for training (def 1e-3)
  --validation_ratio F  ratio of training dataset reserved for validation (def 0.0)
  -n STR, --nn STR      neural network architecture (def 'SimpleCNN', 'SimpleLinearNN')
  --conv_out_features N [N ...]
                        (SimpleCNN only) number of output features for each convolutional block (def 8 16)
  --conv_kernel_size N  (SimpleCNN only) kernel size of convolutional layers (def 3)
  --maxpool_kernel_size N
                        (SimpleCNN only) kernel size of max pool layers (def 2)

Args that start with '--' (eg. -v) can also be set in a config file (specified via -c). Config file syntax allows: key=value, flag=true, stuff=[a,b,c]
(for details, see syntax at https://goo.gl/R74nmi). If an arg is specified in more than one place, then commandline values override config file values
which override defaults.

Options not provided to the script take default values, e.g. running ./train_simple_pytorch_example.py -v produces the output

** Arg breakdown (defaults / config file / command line):
Command Line Args:   -v
Defaults:
  --workdir:         .
  --device:          cuda
  --epochs:          10
  --batch_size:      64
  --learning_rate:   0.001
  --validation_ratio:0.0
  --nn:              SimpleCNN
  --conv_out_features:[8, 16]
  --conv_kernel_size:3
  --maxpool_kernel_size:2

Arguments that start with -- can have their default values overridden using a configuration file (-c CONFIG_FILE). A configuration file is just a text file (e.g. config.txt) that looks like this:

device = cuda
epochs = 20
batch_size = 64
learning_rate = 1e-3
validation_ratio = 0.2
nn = SimpleCNN
conv_out_features = [8, 16]
conv_kernel_size = 3
maxpool_kernel_size = 2

Note that when running ./train_simple_pytorch_example.py -v -c config.txt the defaults have been replaced by the arguments provided in the config file:

** Arg breakdown (defaults / config file / command line):
Command Line Args:   -v -c config.txt
Config File (config.txt):
  device:            cuda
  epochs:            20
  batch_size:        64
  learning_rate:     1e-3
  validation_ratio:  0.2
  nn:                SimpleCNN
  conv_out_features: [8, 16]
  conv_kernel_size:  3
  maxpool_kernel_size:2
Defaults:
  --workdir:         .

Command line arguments override both defaults and configuration file arguments, e.g.

./train_simple_pytorch_example.py --nn SimpleCNN -v --conv_out_features 8 16 32 -e 5

FashionMNIST data download

When train_simple_pytorch_example.py runs, it checks whether the FashionMNIST data has already been downloaded to WORKDIR/data, and if not, it downloads it automatically.

Network architectures

We provide two neural network architectures that can be selected with option --nn SimpleLinearNN or --nn SimpleCNN.

SimpleLinearNN is a network with fully connected layers

==========================================================================================
Layer (type:depth-idx)                   Output Shape              Param #
==========================================================================================
SimpleLinearNN                           --                        --
├─Flatten: 1-1                           [1, 784]                  --
├─Sequential: 1-2                        [1, 10]                   --
│    └─Linear: 2-1                       [1, 512]                  401,920
│    └─ReLU: 2-2                         [1, 512]                  --
│    └─Linear: 2-3                       [1, 512]                  262,656
│    └─ReLU: 2-4                         [1, 512]                  --
│    └─Linear: 2-5                       [1, 10]                   5,130
==========================================================================================

SimpleCNN is a traditional convolutional neural network (CNN) formed by concatenation of convolutional blocks (Conv2d + ReLU + MaxPool2d + BatchNorm2d). Those blocks are followed by a 1x1 convolution and a fully connected layer with 10 outputs. The hyperparameters that the user can configure are (they are ignored for the other network):

  • --conv_kernel_size N: Size of the convolutional kernels (NxN, dafault 3x3).
  • --maxpool_kernel_size N: Size of the maxpool kernels (NxN, dafault 2x2).
  • --conv_out_features N1 [N2 ...]: Each number adds a convolutional block with the corresponding number of output features. E.g. --conv_out_features 8 16 32 creates a network with 3 blocks
==========================================================================================
Layer (type:depth-idx)                   Output Shape              Param #
==========================================================================================
SimpleCNN                                --                        --
├─ModuleList: 1-1                        --                        --
│    └─Conv2d: 2-1                       [1, 8, 28, 28]            80
│    └─ReLU: 2-2                         [1, 8, 28, 28]            --
│    └─MaxPool2d: 2-3                    [1, 8, 14, 14]            --
│    └─BatchNorm2d: 2-4                  [1, 8, 14, 14]            16
│    └─Conv2d: 2-5                       [1, 16, 14, 14]           1,168
│    └─ReLU: 2-6                         [1, 16, 14, 14]           --
│    └─MaxPool2d: 2-7                    [1, 16, 7, 7]             --
│    └─BatchNorm2d: 2-8                  [1, 16, 7, 7]             32
│    └─Conv2d: 2-9                       [1, 32, 7, 7]             4,640
│    └─ReLU: 2-10                        [1, 32, 7, 7]             --
│    └─MaxPool2d: 2-11                   [1, 32, 3, 3]             --
│    └─BatchNorm2d: 2-12                 [1, 32, 3, 3]             64
│    └─Conv2d: 2-13                      [1, 1, 3, 3]              289
│    └─Flatten: 2-14                     [1, 9]                    --
│    └─Linear: 2-15                      [1, 10]                   100
==========================================================================================

General training options

Currently, the loss (torch.nn.CrossEntropyLoss) and optimizer (torch.optim.SGD) are fixed.

Parameters common to both architectures are

  • --epochs N: number of training epochs.
  • --batch_size N: size of the training batch (if the dataset size is not a multiple of the batch size, the last batch will be smaller).
  • --learning_rate F: learning rate.
  • --validation_ratio F: by default, the script uses all the training data in FashionMNIST for training. But the user can choose to split the training data between training and validation. (The test data is a separate dataset in FashionMNIST).

Output network parameters

Once the network is trained, the model.state_dict() is saved to WORKDIR/models/LOGFILENAME.state_dict.

Monitoring

Option --verbose outputs detailed information about the script arguments, datasets, network architecture and training progress.

** Training:
Epoch 1/10
-------------------------------
train mean loss: 2.3913  [     0/ 60000]
train mean loss: 2.1813  [  6400/ 60000]
train mean loss: 2.1227  [ 12800/ 60000]
train mean loss: 2.0780  [ 19200/ 60000]
train mean loss: 1.9196  [ 25600/ 60000]
train mean loss: 1.6919  [ 32000/ 60000]
train mean loss: 1.4112  [ 38400/ 60000]
train mean loss: 1.2632  [ 44800/ 60000]
train mean loss: 1.0215  [ 51200/ 60000]
train mean loss: 0.8559  [ 57600/ 60000]
Training: Mean loss: 1.6672
Test: Accuracy: 63.8%, Mean loss: 0.9794
Validation: Accuracy: nan%, Mean loss:    nan
Epoch 2/10
-------------------------------
train mean loss: 1.0026  [     0/ 60000]
train mean loss: 0.8822  [  6400/ 60000]
...

Training progress can also be monitored with TensorBoard. The script saves TensorBoard logs to WORKDIR/runs, with a filename formed by the date (YYYY-MM-DD), time (HH-MM-SS), hostname and network architecture (e.g. 2021-11-25_01-15-49_marcel_SimpleCNN). To monitor the logs either during training or afterwards, run

tensorboard --logdir=runs &

and browse the URL displayed on the terminal, e.g. http://localhost:6006/.

If you are working remotely on the GPU server, you need to forward the remote server's port to your local machine

ssh -L 6006:localhost:6006 [email protected]_IP 

We provide plots for Accuracy (%), Mean loss and the Confusion Matrix

Accuracy and loss plots Confusion matrix

Results

SimpleLinearNN

Experiment 2021-11-26_01-33-52_marcel_SimpleLinearNN run with parameters:

./train_simple_pytorch_example.py -v --nn SimpleLinearNN --validation_ratio 0.2 -e 100

** All args:
Namespace(config_file=None, verbose=True, workdir='.', device='cuda', epochs=100, batch_size=64, learning_rate=0.001, validation_ratio=0.2, nn='SimpleLinearNN', conv_out_features=[8, 16], conv_kernel_size=3, maxpool_kernel_size=2)
** Arg breakdown (defaults / config file / command line):
Command Line Args:   -v --nn SimpleLinearNN --validation_ratio 0.2 -e 100
Defaults:
  --workdir:         .
  --device:          cuda
  --batch_size:      64
  --learning_rate:   0.001
  --conv_out_features:[8, 16]
  --conv_kernel_size:3
  --maxpool_kernel_size:2

** GPU found:
NVIDIA GeForce GTX 1050
** Datasets:
Image size (H, W): (28, 28)
Training samples: 48000
Validation samples: 12000
Testing samples: 10000
Classes: {'T-shirt/top': 0, 'Trouser': 1, 'Pullover': 2, 'Dress': 3, 'Coat': 4, 'Sandal': 5, 'Shirt': 6, 'Sneaker': 7, 'Bag': 8, 'Ankle boot': 9}
** Neural network architecture:
==========================================================================================
Layer (type:depth-idx)                   Output Shape              Param #
==========================================================================================
SimpleLinearNN                           --                        --
├─Flatten: 1-1                           [1, 784]                  --
├─Sequential: 1-2                        [1, 10]                   --
│    └─Linear: 2-1                       [1, 512]                  401,920
│    └─ReLU: 2-2                         [1, 512]                  --
│    └─Linear: 2-3                       [1, 512]                  262,656
│    └─ReLU: 2-4                         [1, 512]                  --
│    └─Linear: 2-5                       [1, 10]                   5,130
==========================================================================================
Total params: 669,706
Trainable params: 669,706
Non-trainable params: 0
Total mult-adds (M): 0.67
==========================================================================================
Input size (MB): 0.00
Forward/backward pass size (MB): 0.01
Params size (MB): 2.68
Estimated Total Size (MB): 2.69
==========================================================================================

The final metrics (after 100 epochs) are shown under each corresponding figure:

Mean loss plots

  • Mean loss:
    • Training (brown): 0.4125
    • Test (dark blue): 0.4571
    • Validation (cyan): 0.4478

Accuracy plots

  • Accuracy:
    • Test (pink): 83.8%
    • Validation (green): 84.3%

SimpleCNN

Experiment 2021-11-26_02-17-18_marcel_SimpleCNN run with parameters:

./train_simple_pytorch_example.py -v --nn SimpleCNN --validation_ratio 0.2 -e 100 --conv_out_features 8 16 --conv_kernel_size 3 --maxpool_kernel_size 2

** All args:
Namespace(config_file=None, verbose=True, workdir='.', device='cuda', epochs=100, batch_size=64, learning_rate=0.001, validation_ratio=0.2, nn='SimpleCNN', conv_out_features=[8, 16], conv_kernel_size=3, maxpool_kernel_size=2)
** Arg breakdown (defaults / config file / command line):
Command Line Args:   -v --nn SimpleCNN --validation_ratio 0.2 -e 100 --conv_out_features 8 16 --conv_kernel_size 3 --maxpool_kernel_size 2
Defaults:
  --workdir:         .
  --device:          cuda
  --batch_size:      64
  --learning_rate:   0.001

** GPU found:
NVIDIA GeForce GTX 1050
** Datasets:
Image size (H, W): (28, 28)
Training samples: 48000
Validation samples: 12000
Testing samples: 10000
Classes: {'T-shirt/top': 0, 'Trouser': 1, 'Pullover': 2, 'Dress': 3, 'Coat': 4, 'Sandal': 5, 'Shirt': 6, 'Sneaker': 7, 'Bag': 8, 'Ankle boot': 9}
** Neural network architecture:
==========================================================================================
Layer (type:depth-idx)                   Output Shape              Param #
==========================================================================================
SimpleCNN                                --                        --
├─ModuleList: 1-1                        --                        --
│    └─Conv2d: 2-1                       [1, 8, 28, 28]            80
│    └─ReLU: 2-2                         [1, 8, 28, 28]            --
│    └─MaxPool2d: 2-3                    [1, 8, 14, 14]            --
│    └─BatchNorm2d: 2-4                  [1, 8, 14, 14]            16
│    └─Conv2d: 2-5                       [1, 16, 14, 14]           1,168
│    └─ReLU: 2-6                         [1, 16, 14, 14]           --
│    └─MaxPool2d: 2-7                    [1, 16, 7, 7]             --
│    └─BatchNorm2d: 2-8                  [1, 16, 7, 7]             32
│    └─Conv2d: 2-9                       [1, 1, 7, 7]              145
│    └─Flatten: 2-10                     [1, 49]                   --
│    └─Linear: 2-11                      [1, 10]                   500
==========================================================================================
Total params: 1,941
Trainable params: 1,941
Non-trainable params: 0
Total mult-adds (M): 0.30
==========================================================================================
Input size (MB): 0.00
Forward/backward pass size (MB): 0.09
Params size (MB): 0.01
Estimated Total Size (MB): 0.11
==========================================================================================

Mean loss plots

  • Mean loss:
    • Training (dark blue): 0.3186
    • Test (orange): 0.3686
    • Validation (brown): 0.3372

Accuracy plots

  • Accuracy:
    • Test (cyan): 87.2%
    • Validation (pink): 88.1%
You might also like...
A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and Tensorflow wrappers, to make predictions on uploaded images. Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.

In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

This is a model made out of Neural Network specifically a Convolutional Neural Network model
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternative libraries that can be used for this purpose, one of which is the PyTorch library.

This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayesian-Torch is designed to be flexible and seamless in extending a deterministic deep neural network architecture to corresponding Bayesian form by simply replacing the deterministic layers with Bayesian layers.

An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset

关于实现的一点说明 山东大学 2020级 苏博南 www.subonan.com 文件说明 tools.py 这里面主要有两个函数: resize(a, lenb) 这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因

This is the official repo for TransFill:  Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations at CVPR'21. According to some product reasons, we are not planning to release the training/testing codes and models. However, we will release the dataset and the scripts to prepare the dataset.
Releases(v1.0.0)
  • v1.0.0(Jan 7, 2022)

    Toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset with several common and useful features:

    • Choose between two different neural network architectures
    • Make architectures parametrizable
    • Read input arguments from config file or command line
      • (command line arguments override config file ones)
    • Download FashionMNIST dataset if not already downloaded
    • Monitor training progress on the terminal and/or with TensorBoard logs
      • Accuracy, loss, confusion matrix
    Source code(tar.gz)
    Source code(zip)
Owner
Ramón Casero
Ramón Casero
A convolutional recurrent neural network for classifying A/B phases in EEG signals recorded for sleep analysis.

CAP-Classification-CRNN A deep learning model based on Inception modules paired with gated recurrent units (GRU) for the classification of CAP phases

Apurva R. Umredkar 2 Nov 25, 2022
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle. How to use Download and install QGIS and clone the repo : git clone

39 Dec 09, 2022
An image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testingAn image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testing

SVM Données Une base d’images contient 490 images pour l’apprentissage (400 voitures et 90 bateaux), et encore 21 images pour fait des tests. Prétrait

Achraf Rahouti 3 Nov 30, 2021
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
True Few-Shot Learning with Language Models

This codebase supports using language models (LMs) for true few-shot learning: learning to perform a task using a limited number of examples from a single task distribution.

Ethan Perez 124 Jan 04, 2023
Learned image compression

Overview Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression. We first release the code for Variationa

Jiaheng Liu 163 Dec 04, 2022
A simple AI that will give you si ple task and this is made with python

Crystal-AI A simple AI that will give you si ple task and this is made with python Prerequsites: Python3.6.2 pyttsx3 pip install pyttsx3 pyaudio pip i

CrystalAnd 1 Dec 25, 2021
Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Nils Thuerey 1.3k Jan 08, 2023
Simple codebase for flexible neural net training

neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi

Jannik Kossen 7 Apr 05, 2022
HIVE: Evaluating the Human Interpretability of Visual Explanations

HIVE: Evaluating the Human Interpretability of Visual Explanations Project Page | Paper This repo provides the code for HIVE, a human evaluation frame

Princeton Visual AI Lab 16 Dec 13, 2022
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
Implementation for the paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR2021).

Invertible Image Denoising This is the PyTorch implementation of paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR 20

157 Dec 25, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition" Pre-trained Deep Convo

Ankush Malaker 5 Nov 11, 2022
Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Pano3D A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation Pano3D is a new benchmark for depth estimation from spherical panoramas. We

Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas 50 Dec 29, 2022
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
Neural Turing Machines (NTM) - PyTorch Implementation

PyTorch Neural Turing Machine (NTM) PyTorch implementation of Neural Turing Machines (NTM). An NTM is a memory augumented neural network (attached to

Guy Zana 519 Dec 21, 2022
Shitty gaze mouse controller

demo.mp4 shitty_gaze_mouse_cotroller install tensofflow, cv2 run the main.py and as it starts it will collect data so first raise your left eyebrow(bo

16 Aug 30, 2022