Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Related tags

Deep LearningWorktory
Overview

Welcome to Worktory's documentation!

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

As the network automation ecosystem grows, several connection plugins and parsers are available, and several times choosing a library or a connection plugin restricts all the devices to the same connection method.

Worktory tries to solve that problem giving the developer total flexibility for choosing the connector plugin and parsers for each device, at the same time that exposes a single interface for every plugin.

Installing

Worktory is available in PyPI, to install run:

$ pip install worktory

Using worktory

Sample Inventory

devices = [
            {
            'name': 'sandbox-iosxr-1',
            'hostname': 'sandbox-iosxr-1.cisco.com',
            'platform': 'cisco_iosxr',
            'username': 'admin',
            'password': 'C1sco12345',
            'groups': ['CORE'],
            'connection_manager': 'scrapli',
            'select_parsers' : 'genie',
            'mode': 'async',
            'transport': 'asyncssh',
            },
            {
            'name': 'sandbox-nxos-1',
            'hostname': 'sandbox-nxos-1.cisco.com',
            'platform': 'cisco_nxos',
            'username': 'admin',
            'password': 'Admin_1234!',
            'groups': ['CORE'],
            'select_parsers' : 'ntc',
            'connection_manager': 'scrapli',
            'mode': 'async',
            'transport': 'asyncssh'
            },
            {
            'name': 'sandbox-nxos-2',
            'hostname': 'sandbox-nxos-1.cisco.com',
            'platform': 'nxos',
            'username': 'admin',
            'password': 'Admin_1234!',
            'groups': ['EDGE'],
            'connection_manager': 'unicon',
            'mode': 'sync',
            'transport': 'ssh',
            'GRACEFUL_DISCONNECT_WAIT_SEC': 0,
            'POST_DISCONNECT_WAIT_SEC': 0,
            },
            {
            'name': 'sandbox-iosxr-2',
            'hostname': 'sandbox-iosxr-1.cisco.com',
            'platform': 'cisco_iosxr',
            'username': 'admin',
            'password': 'C1sco12345',
            'groups': ['CORE'],
            'connection_manager': 'scrapli',
            'select_parsers' : 'genie',
            'mode': 'sync',
            },
        ]

Collecting Running config from async devices

from worktory import InventoryManager
import asyncio
inventory = InventoryManager(devices)

device_configs = {}
async def get_config(device):
    await device.connect()
    config = await device.execute("show running-config")
    device_configs[device.name] = config
    await device.disconnect()

async def async_main():
    coros = [get_config(device) for device in inventory.filter(mode='async')]
    await asyncio.gather(*coros)

loop = asyncio.get_event_loop()
loop.run_until_complete(async_main())

Collecting Running config from sync devices

from worktory import InventoryManager
from multiprocessing import Pool
inventory = InventoryManager(devices)

def get_config(device_name):
    inventory = InventoryManager(devices)
    device = inventory.devices[device_name]
    device.connect()
    config = device.execute("show running-config")
    device.disconnect()
    return ( device.name , config )

def main():
    devs = [device.name for device in inventory.filter(mode='sync')]
    with Pool(2) as p:
        return p.map(get_config, devs)


output = main()
Owner
Renato Almeida de Oliveira
I'm a telecommunications Engineer, with experience on network engineering
Renato Almeida de Oliveira
The ICS Chat System project for NYU Shanghai Fall 2021

ICS_Chat_System [Catenger] This is the ICS Chat System project for NYU Shanghai Fall 2021 Creators: Shavarsh Melikyan, Skyler Chen and Arghya Sarkar,

1 Dec 20, 2021
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
DLFlow is a deep learning framework.

DLFlow是一套深度学习pipeline,它结合了Spark的大规模特征处理能力和Tensorflow模型构建能力。利用DLFlow可以快速处理原始特征、训练模型并进行大规模分布式预测,十分适合离线环境下的生产任务。利用DLFlow,用户只需专注于模型开发,而无需关心原始特征处理、pipeline构建、生产部署等工作。

DiDi 152 Oct 27, 2022
Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database

Python cx_Oracle Notebooks, 2022 The repository contains Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Da

Christopher Jones 13 Dec 15, 2022
DTCN IJCAI - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
PED: DETR for Crowd Pedestrian Detection

PED: DETR for Crowd Pedestrian Detection Code for PED: DETR For (Crowd) Pedestrian Detection Paper PED: DETR for Crowd Pedestrian Detection Installati

36 Sep 13, 2022
Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Michael Nielsen 13.9k Dec 26, 2022
LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.

LightningFSL: Few-Shot Learning with Pytorch-Lightning In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, inc

Xu Luo 76 Dec 11, 2022
Resources for our AAAI 2022 paper: "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification".

LOREN Resources for our AAAI 2022 paper (pre-print): "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification". DEMO System Check out o

Jiangjie Chen 37 Dec 27, 2022
Revisiting Temporal Alignment for Video Restoration

Revisiting Temporal Alignment for Video Restoration [arXiv] Kun Zhou, Wenbo Li, Liying Lu, Xiaoguang Han, Jiangbo Lu We provide our results at Google

52 Dec 25, 2022
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
Adversarial Texture Optimization from RGB-D Scans (CVPR 2020).

AdversarialTexture Adversarial Texture Optimization from RGB-D Scans (CVPR 2020). Scanning Data Download Please refer to data directory for details. B

Jingwei Huang 153 Nov 28, 2022
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Facebook Research 23.3k Jan 08, 2023
Alpha-Zero - Telegram Group Manager Bot Written In Python Using Pyrogram

✨ Alpha Zero Bot ✨ Telegram Group Manager Bot + Userbot Written In Python Using

1 Feb 17, 2022
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022
The official implementation of CircleNet: Anchor-free Detection with Circle Representation, MICCAI 2030

CircleNet: Anchor-free Detection with Circle Representation The official implementation of CircleNet, MICCAI 2020 [PyTorch] [project page] [MICCAI pap

The Biomedical Data Representation and Learning Lab 45 Nov 18, 2022
Deep functional residue identification

DeepFRI Deep functional residue identification Citing @article {Gligorijevic2019, author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Koscio

Flatiron Institute 156 Dec 25, 2022