Simple tutorials on Pytorch DDP training

Overview

pytorch-distributed-training

Distribute Dataparallel (DDP) Training on Pytorch

Features

Good Notes

分享一些网上优质的笔记

TODO

  • 完成DP和DDP源码解读笔记(当前进度50%)
  • 修改代码细节, 复现实验结果

Quick start

想直接运行查看结果的可以执行以下命令, 注意一定要用--ip--port来指定主机的ip地址以及空闲的端口,否则可能无法运行

$ python dataparallel.py --gpu 0,1,2,3
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 distributed.py
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python distributed_mp.py
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python distributed_apex.py
  • --ip=str, e.g --ip='10.24.82.10' 来指定主进程的ip地址

  • --port=int, e.g --port=23456 来指定启动端口号

  • --batch_size=int, e.g --batch_size=128 设定训练batch_size

  • distributed_gradient_accumulation.py

$ CUDA_VISIBLE_DEVICES=0,1,2,3 python distributed_apex.py
  • --ip=str, e.g --ip='10.24.82.10' 来指定主进程的ip地址
  • --port=int, e.g --port=23456 来指定启动端口号
  • --grad_accu_steps=int, e.g --grad_accu_steps=4' 来指定gradient_step

Comparison

结果不够准确,GPU状态不同结果可能差异较大

默认情况下都使用SyncBatchNorm, 这会导致执行速度变慢一些,因为需要增加进程之间的通讯来计算BatchNorm, 但有利于保证准确率

Concepts

  • apex
  • DP: DataParallel
  • DDP: DistributedDataParallel

Environments

  • 4 × 2080Ti
model dataset training method time(seconds/epoch) Top-1 accuracy
resnet18 cifar100 DP 20s
resnet18 cifar100 DP+apex 18s
resnet18 cifar100 DDP 16s
resnet18 cifar100 DDP+apex 14.5s

Basic Concept

  • group: 表示进程组,默认情况下只有一个进程组。
  • world size: 全局进程个数
    • 比如16张卡单卡单进程: world size = 16
    • 8卡单进程: world size = 1
    • 只有当连接的进程数等于world size, 程序才会执行
  • rank: 进程序号,用于进程间通讯,表示进程优先级,rank=0表示主进程
  • local_rank: 进程内,GPU编号,非显示参数,由torch.distributed.launch内部指定,rank=3, local_rank=0 表示第3个进程的第1GPU

Usage 单机多卡

1. 获取当前进程的index

pytorch可以通过torch.distributed.lauch启动器,在命令行分布式地执行.py文件, 在执行的过程中会将当前进程的index通过参数传递给python

import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', default=-1, type=int,
                    help='node rank for distributed training')
args = parser.parse_args()
print(args.local_rank)

2. 定义 main_worker 函数

主要的训练流程都写在main_worker函数中,main_worker需要接受三个参数(最后一个参数optional):

def main_worker(local_rank, nprocs, args):
    training...
  • local_rank: 接受当前进程的rank值,在一机多卡的情况下对应使用的GPU号
  • nprocs: 进程数量
  • args: 自己定义的额外参数

main_worker,相当于你每个进程需要运行的函数(每个进程执行的函数内容是一致的,只不过传入的local_rank不一样)

3. main_worker函数中的整体流程

main_worker函数中完整的训练流程

import torch
import torch.distributed as dist
import torch.backends.cudnn as cudnn
def main_worker(local_rank, nprocs, args):
    args.local_rank = local_rank
    # 分布式初始化,对于每个进程来说,都需要进行初始化
    cudnn.benchmark = True
    dist.init_process_group(backend='nccl', init_method='tcp://ip:port', world_size=nprocs, rank=local_rank)
    # 模型、损失函数、优化器定义
    model = ...
    criterion = ...
    optimizer = ...
    # 设置进程对应使用的GPU
    torch.cuda.set_device(local_rank)
    model.cuda(local_rank)
    # 使用分布式函数定义模型
    model = model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank])
    
    # 数据集的定义,使用 DistributedSampler
    mini_batch_size = batch_size / nprocs # 手动划分 batch_size to mini-batch_size
    train_dataset = ...
    train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
    trainloader = torch.utils.data.DataLoader(train_dataset, batch_size=mini_batch_size, num_workers=..., pin_memory=..., 
                                              sampler=train_sampler)
    
    test_dataset = ...
    test_sampler = torch.utils.data.distributed.DistributedSampler(test_dataset)
    testloader = torch.utils.data.DataLoader(train_dataset, batch_size=mini_batch_size, num_workers=..., pin_memory=..., 
                                             sampler=test_sampler) 
    
    # 正常的 train 流程
    for epoch in range(300):
       model.train()
       for batch_idx, (images, target) in enumerate(trainloader):
          images = images.cuda(non_blocking=True)
          target = target.cuda(non_blocking=True)
          ...
          pred = model(images)
          loss = loss_function(pred, target)
          ...
          optimizer.zero_grad()
          loss.backward()
          optimizer.step()

4. 定义main函数

import argparse
import torch
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--local_rank', default=-1, type=int, help='node rank for distributed training')
parser.add_argument('--batch_size','--batch-size', default=256, type=int)
parser.add_argument('--lr', default=0.1, type=float)

def main_worker(local_rank, nprocs, args):
    ...

def main():
    args = parser.parse_args()
    args.nprocs = torch.cuda.device_count()
    # 执行 main_worker
    main_worker(args.local_rank, args.nprocs, args)

if __name__ == '__main__':
    main()

5. Command Line 启动

$ CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 distributed.py
  • --ip=str, e.g --ip='10.24.82.10' 来指定主进程的ip地址
  • --port=int, e.g --port=23456 来指定启动端口号

参数说明:

  • --nnodes 表示机器的数量
  • --node_rank 表示当前的机器
  • --nproc_per_node 表示每台机器上的进程数量

参考 distributed.py

6. torch.multiprocessing

使用torch.multiprocessing来解决进程自发控制可能产生问题,这种方式比较稳定,推荐使用

import argparse
import torch
import torch.multiprocessing as mp

parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--local_rank', default=-1, type=int, help='node rank for distributed training')
parser.add_argument('--batch_size','--batch-size', default=256, type=int)
parser.add_argument('--lr', default=0.1, type=float)

def main_worker(local_rank, nprocs, args):
    ...

def main():
    args = parser.parse_args()
    args.nprocs = torch.cuda.device_count()
    # 将 main_worker 放入 mp.spawn 中
    mp.spawn(main_worker, nprocs=args.nprocs, args=(args.nprocs, args))

if __name__ == '__main__':
    main()

参考 distributed_mp.py 启动方式如下:

$ CUDA_VISIBLE_DEVICES=0,1,2,3 python distributed_mp.py
  • --ip=str, e.g --ip='10.24.82.10' 来指定主进程的ip地址
  • --port=int, e.g --port=23456 来指定启动端口号

Implemented Work

参考的文章如下(如果有文章没有引用,但是内容差不多的,可以提issue给我,我会补上,实在抱歉):

Owner
Ren Tianhe
Ren Tianhe
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
A reimplementation of DCGAN in PyTorch

DCGAN in PyTorch A reimplementation of DCGAN in PyTorch. Although there is an abundant source of code and examples found online (as well as an officia

Diego Porres 6 Jan 08, 2022
A clear, concise, simple yet powerful and efficient API for deep learning.

The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for

Gluon API 2.3k Dec 17, 2022
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
Deep Latent Force Models

Deep Latent Force Models This repository contains a PyTorch implementation of the deep latent force model (DLFM), presented in the paper, Compositiona

Tom McDonald 5 Oct 26, 2022
Predictive Maintenance LSTM

Predictive-Maintenance-LSTM - Predictive maintenance study for Complex case study, we've obtained failure causes by operational error and more deeply by design mistakes.

Amir M. Sadafi 1 Dec 31, 2021
style mixing for animation face

An implementation of StyleGAN on Animation dataset. Install git clone https://github.com/MorvanZhou/anime-StyleGAN cd anime-StyleGAN pip install -r re

Morvan 46 Nov 30, 2022
This is a repo of basic Machine Learning!

Basic Machine Learning This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resource

Ekram Asif 53 Dec 31, 2022
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

machen 11 Nov 27, 2022
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
Official code repository for Continual Learning In Environments With Polynomial Mixing Times

Official code for Continual Learning In Environments With Polynomial Mixing Times Continual Learning in Environments with Polynomial Mixing Times This

Sharath Raparthy 1 Dec 19, 2021
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022
A curated list of neural rendering resources.

Awesome-of-Neural-Rendering A curated list of neural rendering and related resources. Please feel free to pull requests or open an issue to add papers

Zhiwei ZHANG 43 Dec 09, 2022
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
Just Randoms Cats with python

Random-Cat Just Randoms Cats with python.

OriCode 2 Dec 21, 2021
Prefix-Tuning: Optimizing Continuous Prompts for Generation

Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script

530 Jan 04, 2023
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022