Repository for the paper: VoiceMe: Personalized voice generation in TTS

Overview

🗣 VoiceMe: Personalized voice generation in TTS

arXiv

Abstract

Novel text-to-speech systems can generate entirely new voices that were not seen during training. However, it remains a difficult task to efficiently create personalized voices from a high dimensional speaker space. In this work, we use speaker embeddings from a state-of-the-art speaker verification model (SpeakerNet) trained on thousands of speakers to condition a TTS model. We employ a human sampling paradigm to explore this speaker latent space. We show that users can create voices that fit well to photos of faces, art portraits, and cartoons. We recruit online participants to collectively manipulate the voice of a speaking face. We show that (1) a separate group of human raters confirms that the created voices match the faces, (2) speaker gender apparent from the face is well-recovered in the voice, and (3) people are consistently moving towards the real voice prototype for the given face. Our results demonstrate that this technology can be applied in a wide number of applications including character voice development in audiobooks and games, personalized speech assistants, and individual voices for people with speech impairment.

Demos

  • 📢 Demo website
  • 🔇 Unmute to listen to the videos on Github:
Examples-for-art-works.mp4
Example-chain.mp4

Preprocessing

Setup the repository

git clone https://github.com/polvanrijn/VoiceMe.git
cd VoiceMe
main_dir=$PWD

preprocessing_env="$main_dir/preprocessing-env"
conda create --prefix $preprocessing_env python=3.7
conda activate $preprocessing_env
pip install Cython
pip install git+https://github.com/NVIDIA/[email protected]#egg=nemo_toolkit[all]
pip install requests

Create face styles

We used the same sentence ("Kids are talking by the door", neutral recording) from the RAVDESS corpus from all 24 speakers. You can download all videos by running download_RAVDESS.sh. However, the stills used in the paper are also part of the repository (stills). We can create the AI Gahaku styles by running python ai_gahaku.py and the toonified version by running python toonify.py (you need to add your API key).

Obtain the PCA space

The model used in the paper was trained on SpeakerNet embeddings, so we to extract the embeddings from a dataset. Here we use the commonvoice data. To download it, run: python preprocess_commonvoice.py --language en

To extract the principal components, run compute_pca.py.

Synthesis

Setup

We'll assume, you'll setup a remote instance for synthesis. Clone the repo and setup the virtual environment:

git clone https://github.com/polvanrijn/VoiceMe.git
cd VoiceMe
main_dir=$PWD

synthesis_env="$main_dir/synthesis-env"
conda create --prefix $synthesis_env python=3.7
conda activate $synthesis_env

##############
# Setup Wav2Lip
##############
git clone https://github.com/Rudrabha/Wav2Lip.git
cd Wav2Lip

# Install Requirements
pip install -r requirements.txt
pip install opencv-python-headless==4.1.2.30
wget "https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth" -O "face_detection/detection/sfd/s3fd.pth"  --no-check-certificate

# Install as package
mv ../setup_wav2lip.py setup.py
pip install -e .
cd ..


##############
# Setup VITS
##############
git clone https://github.com/jaywalnut310/vits
cd vits

# Install Requirements
pip install -r requirements.txt

# Install monotonic_align
mv monotonic_align ../monotonic_align

# Download the VCTK checkpoint
pip install gdown
gdown https://drive.google.com/uc?id=11aHOlhnxzjpdWDpsz1vFDCzbeEfoIxru

# Install as package
mv ../setup_vits.py setup.py
pip install -e .

cd ../monotonic_align
python setup.py build_ext --inplace
cd ..


pip install flask
pip install wget

You'll need to do the last step manually (let me know if you know an automatic way). Download the checkpoint wav2lip_gan.pth from here and put it in Wav2Lip/checkpoints. Make sure you have espeak installed and it is in PATH.

Running

Start the remote service (I used port 31337)

python server.py --port 31337

You can send an example request locally, by running (don't forget to change host and port accordingly):

python request_demo.py

We also made a small 'playground' so you can see how slider values will influence the voice. Start the local flask app called client.py.

Experiment

The GSP experiment cannot be shared at this moment, as PsyNet is still under development.

Owner
Pol van Rijn
PhD student at Max Planck Institute for Empirical Aesthetics
Pol van Rijn
Named Entity Recognition API used by TEI Publisher

TEI Publisher Named Entity Recognition API This repository contains the API used by TEI Publisher's web-annotation editor to detect entities in the in

e-editiones.org 14 Nov 15, 2022
MPNet: Masked and Permuted Pre-training for Language Understanding

MPNet MPNet: Masked and Permuted Pre-training for Language Understanding, by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu, is a novel pre-tr

Microsoft 228 Nov 21, 2022
🌐 Translation microservice powered by AI

Dot Translate 🌐 A microservice for quick and local translation using A.I. This service starts a local webserver used for neural machine translation.

Dot HQ 48 Nov 22, 2022
A fast and easy implementation of Transformer with PyTorch.

FasySeq FasySeq is a shorthand as a Fast and easy sequential modeling toolkit. It aims to provide a seq2seq model to researchers and developers, which

宁羽 7 Jul 18, 2022
Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
Repositório do trabalho de introdução a NLP

Trabalho da disciplina de BI NLP Repositório do trabalho da disciplina Introdução a Processamento de Linguagem Natural da pós BI-Master da PUC-RIO. Eq

Leonardo Lins 1 Jan 18, 2022
This repository contains helper functions which can help you generate additional data points depending on your NLP task.

NLP Albumentations For Data Augmentation This repository contains helper functions which can help you generate additional data points depending on you

Aflah 6 May 22, 2022
TFIDF-based QA system for AIO2 competition

AIO2 TF-IDF Baseline This is a very simple question answering system, which is developed as a lightweight baseline for AIO2 competition. In the traini

Masatoshi Suzuki 4 Feb 19, 2022
Finally decent dictionaries based on Wiktionary for your beloved eBook reader.

eBook Reader Dictionaries Finally, decent dictionaries based on Wiktionary for your beloved eBook reader. Dictionaries Catalan 🚧 Ελληνικά (help welco

Mickaël Schoentgen 163 Dec 31, 2022
I can help you convert your images to pdf file.

IMAGE TO PDF CONVERTER BOT Configs TOKEN - Get bot token from @BotFather API_ID - From my.telegram.org API_HASH - From my.telegram.org Deploy to Herok

MADUSHANKA 10 Dec 14, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Jan 08, 2023
Trex is a tool to match semantically similar functions based on transfer learning.

Trex is a tool to match semantically similar functions based on transfer learning.

62 Dec 28, 2022
An open source library for deep learning end-to-end dialog systems and chatbots.

DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re

Neural Networks and Deep Learning lab, MIPT 6k Dec 31, 2022
Sequence model architectures from scratch in PyTorch

This repository implements a variety of sequence model architectures from scratch in PyTorch. Effort has been put to make the code well structured so that it can serve as learning material. The train

Brando Koch 11 Mar 28, 2022
Help you discover excellent English projects and get rid of disturbing by other spoken language

GitHub English Top Charts 「Help you discover excellent English projects and get

GrowingGit 544 Jan 09, 2023
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
Training and evaluation codes for the BertGen paper (ACL-IJCNLP 2021)

BERTGEN This repository is the implementation of the paper "BERTGEN: Multi-task Generation through BERT" (https://arxiv.org/abs/2106.03484). The codeb

<a href=[email protected]"> 9 Oct 26, 2022
A framework for training and evaluating AI models on a variety of openly available dialogue datasets.

ParlAI (pronounced “par-lay”) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dia

Facebook Research 9.7k Jan 09, 2023
Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"

T5: Text-To-Text Transfer Transformer The t5 library serves primarily as code for reproducing the experiments in Exploring the Limits of Transfer Lear

Google Research 4.6k Jan 01, 2023