AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation

Overview

AirPose

AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation

iccv_teaser


Check the teaser video

This repository contains the code of AirPose a novel markerless 3D human motion capture (MoCap) system for unstructured, outdoor environments that uses a team of autonomous unmanned aerialvehicles (UAVs) with on-board RGB cameras and computation.

Please clone the repository with the following

git clone https://github.com/robot-perception-group/AirPose.git --recursive


Data can be freely accessed here. Please download the data, and untar it whenever necessary. Content details are following:

  • copenet_synthetic_data.tar.gz - Synthetic dataset
  • copenet_dji_real_data.tar.gz - real dataset
  • hmr_synthetic.tar.gz - Baseline pretrained checkpoint on synthetic data and pkl files for precalculated results
  • copenet_singleview_ckpt.zip - Baseline+Fullcam pretrained checkpoint on synthetic data and pkl files for precalculated results
  • muhmr_synthetic.tar.gz - Baseline+Multiview pretrained checkpoint on synthetic data and pkl files for precalculated results
  • copenet_twoview_synthetic_ckpt.tar.gz - AirPose pretrained checkpoint on synthetic data and pkl files for precalculated results
  • hmr_real_ckpt.zip - Baseline finetuned checkpoint on real data and pkl files for precalculated results
  • copenet_twoview_real_ckpt.zip - AirPose finetuned checkpoint on real data and pkl files for precalculated results
  • SMPLX_to_J14.pkl - Mapping from SMPLX joints to the 14 joints format of openpose. It is used in the method AirPose+.

The code was tested using Python 3.8.

SMPLX code in this repo is a modified version of the official SMLX implementation. Download the SMPLX model weights from here and run the following

# from the download location
unzip models_smplx_v1_1.zip -d models_smplx
unzip models_smplx/models/smplx/smplx_npz.zip -d used_models
rm models_smplx -r

Then copy the content of used_models (just created, with SMPLX_{MALE,FEMALE,NEUTRAL}.npz files) folder into your_path/AirPose/copenet/src/copenet/data/smplx/models/smplx.

You need to register before being able to download the weights.

Now, you may want to create a virtual environment. Please be sure your pip is updated.

Install the necessary requirements with pip install -r requirements.txt. If you don't have a cuda compatible device, change the device to cpu in copenet_real/src/copenet_real/config.py and copenet/src/copenet/config.py.

In those files (copenet_real/src/copenet_real/config.py and copenet/src/copenet/config.py) change LOCAL_DATA_DIR to /global/path/AirPose/copenet/src/copenet/data".

Check out this link to fix the runtime error RuntimeError: Subtraction, the - operator, with a bool tensor is not supported due to the Torchgeometry package.

Install the copenet and copenet_real packages in this repo

pip install -e copenet
pip install -e copenet_real

Download the head and hands indices files form here and place them in AirPose/copenet/src/copenet/data/smplx (MANO_SMPLX_vertex_ids.pkl and SMPL-X__FLAME_vertex_ids.npy).

Synthetic data training

The data to be used is copenet_synthetic_data.tar.gz (here)

Preprocess

To run the code of this repository you first need to preprocess the data using

# from AirPose folder
python copenet/src/copenet/scripts/prepare_aerialpeople_dataset.py /absolute/path/copenet_synthetic

And code can be run by the following (from AirPose/copenet folder):

python src/copenet/copenet_trainer.py --name=test_name --version=test_version --model=muhmr --datapath=/absolute/path/copenet_synthetic --log_dir=path/location/ --copenet_home=/absolute/path/AirPose/copenet --optional-params...

The datapath is the location of the training data.

--model specify the model type between [hmr, muhmr, copnet_singleview, copenet_twoview] which corresponds to the Baseline, Baseline+multi-view, Baseline+Fullcam and AirPose respectively.

Logs will be saved in $log_dir/$name/$version/

optional-params is to be substituted with the copenet_trainer available params as weights, lr..

Evaluation on the synthetic data

For model type [muhmr, copenet_twoview].

cd AirPose/copenet_real

python src/copenet_real/scripts/copenet_synth_res_compile.py "model type" "checkpoint Path" "/path to the dataset"

For model type [hmr, copenet_singleview], the provided checkpoint is trained with an older pytorch lightning version (<=1.2). If you want to use them, install pytorch-lightning<=1.2.

We provide the precalculated outputs on the syntehtic data using these checkpoints.

To generate the metrics, run

cd AirPose/copenet_real

python src/copenet_real/scripts/hmr_synth_res_compile.py "model type" "precalculated results directory Path" "/path to the dataset" "your_path/AirPose/copenet/src/copenet/data/smplx/models/smplx"

Fine-tuning on real dataset

The data to be used is copenet_dji_real_data.tar.gz(here).

Install the human body prior from here and download its pretrained weights (version 2) from here. Set the vposer_weights variable in the .../AirPose/copenet_real/src/copenet_real/config.py file to the absolute path of the downloaded weights (e.g. /home/user/Downloads/V02_05). If you do NOT have a GPU please change human_body_prior/tools/model_loader.py line 68 from state_dict = torch.load(trained_weigths_fname)['state_dict'] to state_dict = torch.load(trained_weigths_fname, map_location=torch.device('cpu'))['state_dict']

Note: for the hmr (Baseline) model pytorch-lightning<=1.2 is required. You might have to recheck requirements, or reinstall the requirements you can find in the main folder of this repo.

Code can be run by the following (from AirPose/copenet_real/ folder)

python src/copenet_real/copenet_trainer.py --name=test_name --version=test_version --model=hmr --datapath=path/location --log_dir=path/location/ --resume_from_checkpoint=/path/to/checkpoint --copenet_home=/absolute/path/AirPose/copenet --optional-params...

The datapath is the location of the training data.

--model specify the model type between [hmr, copenet_twoview] which corresponds to the Baseline, AirPose respectively.

The --resume_from_checkpoint is path to the pretrained checkpoint on the synthetic data.

Evaluation on real data

Install graphviz dependency with pip install graphviz in the same virtual environment.

Following code will generate the plots comparing the results of the baseline method, AirPose and AirPose+ on the real data.

This can be run from AirPose folder.

python copenet_real_data/scripts/bundle_adj.py "path_to_the_real_dataset" \\
"path_to_the_SMPLX_neutral_npz_file" \\
"path_to_vposer_folder" \\
"path_to_the_hmr_checkpoint_directory" \\
"path_to_the_airpose_precalculated_res_on_realdata_pkl" \\
"path_to_the_SMPLX_to_j14_mapping_pkl_file" \\
"type_of_data(train/test)" 

Note that:

  • The SMPLX_neutral_npz_file should be in your_path/AirPose/copenet/src/copenet/data/smplx/models/smplx.
  • The vposer_folder should be in the vposer_weights folder that you downloaded to finetune on the real data
  • The hmr checkpoint is either being generated by you or downloaded from here
  • The precalculated_res_on_realdata_pkl can be found within the same archive you downloaded above. More on how to compute them yourself below.
  • The SMPLX_to_j14_pkl can be found here.

The evaluation code above needs precalculated results on the real data which are provided with the dataset. If you want to calculate them yourself, run the following code and save the variable outputs in a pkl file when a breakpoint is hit. The pkl files provided with the data are generated in the same way. For AirPose

python copenet_real/src/copenet_real/scripts/copenet_real_res_compile.py "checkpoint Path" "/path to the dataset"

For Baseline

python copenet_real/src/copenet_real/scripts/hmr_real_res_compile.py "checkpoint Path" "/path to the dataset"

Testing the client-server synchronization mechanism

To this end you need to install ros-{melodic,noetic} in your pc (Ubuntu 18.04-20.04).

Please follow the instructions that you can find here

After that you need to install the following dependencies:

sudo add-apt-repository ppa:joseluisblancoc/mrpt-stable

Navigate to your catkin_ws folder (e.g. AirPose/catkin_ws) and run:

touch src/aircap/packages/optional/basler_image_capture/Grab/CATKIN_IGNORE
touch src/aircap/packages/optional/ptgrey_image_capture/Grab/CATKIN_IGNORE

this applies to ros-melodic

Firstly, checkout the AirPose branch ros-melodic.

Be sure to update the submodule (first command).

git submodule update 
sudo apt install libmrpt-dev mrpt-apps
cd /your/path/AirPose/catkin_ws
touch src/aircap/packages/3rdparty/mrpt_bridge/CATKIN_IGNORE
touch src/aircap/packages/3rdparty/pose_cov_ops/CATKIN_IGNORE
sudo apt install -y ros-melodic-octomap-msgs ros-melodic-cv-camera ros-melodic-marker-msgs ros-melodic-mrpt-msgs ros-melodic-octomap-ros ros-melodic-mrpt-bridge ros-melodic-mrpt1

this applies to ros-noetic

sudo apt install libmrpt-poses-dev libmrpt-obs-dev libmrpt-graphs-dev libmrpt-maps-dev libmrpt-slam-dev -y
sudo apt install -y ros-noetic-octomap-msgs ros-noetic-cv-camera ros-noetic-marker-msgs ros-noetic-mrpt-msgs ros-noetic-octomap-ros ros-noetic-mrpt2

Then you can run catkin_make from the catkin_ws folder to build the whole workspace.

To run the client-server architecture you need:

  • An image topic
  • A camera_info topic
  • A feedback topic with the region of interest information

To test the code you can do the following.

  • Download the dji rosbags that you can find here either from the test_bag or train_bag folders.
  • Download the checkpoint airpose_asv3_same_hparams_checkpoint.tar.gz from here

In separated terminals (with the workspace sourced) run:

  • roscore

  • rosparam set use_sim_time true

  • Launch the first client (i.e. the first "drone") with roslaunch airpose_client one_robot.launch host:=127.0.0.1 port:=9901 feedback_topic:=info img_topic:=camera/image_raw camera_info_topic:=camera/info robotID:=1 reproject:=false groundtruth:=true, with host you can change the server IP address, port must correspond, feedback_topic must contain the ROI and is of type neural_network_detector::NeuralNetworkFeedback, robotID should be either 1 or 2, reproject is used to avoid a reprojection to different intrisics parameters and groundtruth:=true is used to provide {min_x, max_x, min_y, max_y} in the ROI message (description below)

  • Launch the second client roslaunch airpose_client one_robot.launch host:=127.0.0.1 port:=9902 feedback_topic:=info img_topic:=camera/image_raw camera_info_topic:=camera/info robotID:=2 reproject:=false groundtruth:=true

  • Launch the servers, default IP 127.0.0.1

    Using the virtualenv/python3.8 installations with previous requirements installed

    • Firstly change folder to cd AirPose/catkin_ws/src/aircap/packages/flight/airpose_server
      • First server, run python server.py -p 9901 -m /path/to/the/file.ckpt, note that -p port needs to match the client_1 port
      • Second server, run python server.py -p 9902 -m /path/to/the/file.ckpt, note that -p port needs to match the client_2 port
  • To visualize the results you need to install some dependencies

    Using the virtualenv/python3.8 installations with previous requirements installed.

    • run pip install meshcat rospkg
    • Change folder to cd AirPose/catkin_ws/src/aircap/packages/flight/airpose_server and run pip install -e smplx.
    • The visualization node can then be run with python copenet_rosViz.py /machine_1/step3_pub /absolute/path/to/smplx/models or python copenet_rosViz.py /machine_2/step3_pub /absolute/path/to/smplx/models. The path is most likely /path/to/AirPose/copenet/src/copenet/data/smplx
  • You can either use the complete bag files with rosbag play d*_BGR.bag --clock --pause

    or create smaller (overlapping) bags using the split.zsh script that you find in both folders. This split will create 5 split from each bag. Afterwards, simply run rosbag play d*_split1.bag --clock --pause, where split{n-th} is the n-th split of the longer sequence. The splits have some overlap between them.

At this point you should be able to see play the rosbag in the way you prefer.

The published topics, for each machine, are:

  • machine_x/step1_pub, the results of the first step of the network, read by the other machine
  • machine_x/step2_pub, the results of the second step of the network, read by the other machine
  • machine_x/step3_pub, the final results of machine_x

The ROI message can be either used as "grountruth" box with the following structure:

ymin = ymin
ymax = ymax
ycenter = xmin
xcenter = xmax

Or as a more general box where you specify the center and the height of the box. In that case a 3:4 aspect ratio is considered.

ymin = ymin
ymax = ymax
xcenter = x_center_of_the_bb
ycenter = y_center_of_the_bb

You can also create your bag and provide your own data to the tool. To that end you can check the code available here that uses a csv with the needed information (image paths, bounding boxes, and camera info) to build the bags.

Note that this is no different than running the inference manually, except for the fact that this runs at 4FPS and has the synchronization procedure enabled as explained in the paper.

Owner
Robot Perception Group
Robot Perception Group is a reaearch group at the Perceiving Systems Department of the Max Planck Institue for Intelligent Systems, Tübingen, Germany
Robot Perception Group
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
An e-commerce company wants to segment its customers and determine marketing strategies according to these segments.

customer_segmentation_with_rfm Business Problem : An e-commerce company wants to

Buse Yıldırım 3 Jan 06, 2022
Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks

ForecastingNonverbalSignals This is the implementation for the paper Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative A

1 Feb 10, 2022
[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo

VITA 59 Dec 28, 2022
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
Deep Inertial Prediction (DIPr)

Deep Inertial Prediction For more information and context related to this repo, please refer to our website. Getting Started (non Docker) Note: you wi

Arcturus Industries 12 Nov 11, 2022
Curvlearn, a Tensorflow based non-Euclidean deep learning framework.

English | 简体中文 Why Non-Euclidean Geometry Considering these simple graph structures shown below. Nodes with same color has 2-hop distance whereas 1-ho

Alibaba 123 Dec 12, 2022
A small fun project using python OpenCV, mediapipe, and pydirectinput

Here I tried a small fun project using python OpenCV, mediapipe, and pydirectinput. Here we can control moves car game when yellow color come to right box (press key 'd') left box (press key 'a') lef

Sameh Elisha 3 Nov 17, 2022
Software associated to AAAI paper "Planning with Biological Neurons and Synapses"

jBrain Software associated with the AAAI 2022 paper Francesco D'Amore, Daniel Mitropolsky, Pierluigi Crescenzi, Emanuele Natale, Christos H. Papadimit

Pierluigi Crescenzi 1 Apr 10, 2022
FishNet: One Stage to Detect, Segmentation and Pose Estimation

FishNet FishNet: One Stage to Detect, Segmentation and Pose Estimation Introduction In this project, we combine target detection, instance segmentatio

1 Oct 05, 2022
Pytorch implementation of Compressive Transformers, from Deepmind

Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran

Phil Wang 118 Dec 01, 2022
Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capability)

Protein GLM (wip) Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capabil

Phil Wang 17 May 06, 2022
PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer.

Unsupervised_IEPGAN This is the PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer. Ha

25 Oct 26, 2022
NeROIC: Neural Object Capture and Rendering from Online Image Collections

NeROIC: Neural Object Capture and Rendering from Online Image Collections This repository is for the source code for the paper NeROIC: Neural Object C

Snap Research 647 Dec 27, 2022
ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.

ERISHA: Multilingual Multispeaker Expressive Text-to-Speech Library ERISHA is a multilingual multispeaker expressive speech synthesis framework. It ca

Ajinkya Kulkarni 43 Nov 27, 2022
Deep High-Resolution Representation Learning for Human Pose Estimation

Deep High-Resolution Representation Learning for Human Pose Estimation (accepted to CVPR2019) News If you are interested in internship or research pos

HRNet 167 Dec 27, 2022
My tensorflow implementation of "A neural conversational model", a Deep learning based chatbot

Deep Q&A Table of Contents Presentation Installation Running Chatbot Web interface Results Pretrained model Improvements Upgrade Presentation This wor

Conchylicultor 2.9k Dec 28, 2022
(NeurIPS '21 Spotlight) IQ-Learn: Inverse Q-Learning for Imitation

Inverse Q-Learning (IQ-Learn) Official code base for IQ-Learn: Inverse soft-Q Learning for Imitation, NeurIPS '21 Spotlight IQ-Learn is an easy-to-use

Divyansh Garg 102 Dec 20, 2022
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
A simple version for graphfpn

GraphFPN: Graph Feature Pyramid Network for Object Detection Download graph-FPN-main.zip For training , run: python train.py For test with Graph_fpn

WorldGame 67 Dec 25, 2022