BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

Related tags

Deep LearningBADet
Overview

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

As of Apr. 17th, 2021, 1st place in KITTI BEV detection leaderboard and on par performance on KITTI 3D detection leaderboard. The detector can run at 7.1 FPS.

Authors: Rui Qian, Xin Lai, Xirong Li

[arXiv] [elsevier]

Citation

If you find this code useful in your research, please consider citing our work:

@InProceedings{qian2022pr,
author = {Rui Qian and Xin Lai and Xirong Li},
title = {BADet: Boundary-Aware 3D Object Detection from Point Clouds},
booktitle = {Pattern Recognition (PR)},
month = {January},
year = {2022}
}
@misc{qian20213d,
title={3D Object Detection for Autonomous Driving: A Survey}, 
author={Rui Qian and Xin Lai and Xirong Li},
year={2021},
eprint={2106.10823},
archivePrefix={arXiv},
primaryClass={cs.CV}
}

Updates

2021-03-17: The performance (using 40 recall poisitions) on test set is as follows:

Car [email protected], 0.70, 0.70:
bbox AP:98.75, 95.61, 90.64
bev  AP:95.23, 91.32, 86.48 
3d   AP:89.28, 81.61, 76.58 
aos  AP:98.65, 95.34, 90.28 

Introduction

model Currently, existing state-of-the-art 3D object detectors are in two-stage paradigm. These methods typically comprise two steps: 1) Utilize a region proposal network to propose a handful of high-quality proposals in a bottom-up fashion. 2) Resize and pool the semantic features from the proposed regions to summarize RoI-wise representations for further refinement. Note that these RoI-wise representations in step 2) are considered individually as uncorrelated entries when fed to following detection headers. Nevertheless, we observe these proposals generated by step 1) offset from ground truth somehow, emerging in local neighborhood densely with an underlying probability. Challenges arise in the case where a proposal largely forsakes its boundary information due to coordinate offset while existing networks lack corresponding information compensation mechanism. In this paper, we propose $BADet$ for 3D object detection from point clouds. Specifically, instead of refining each proposal independently as previous works do, we represent each proposal as a node for graph construction within a given cut-off threshold, associating proposals in the form of local neighborhood graph, with boundary correlations of an object being explicitly exploited. Besides, we devise a lightweight Region Feature Aggregation Module to fully exploit voxel-wise, pixel-wise, and point-wise features with expanding receptive fields for more informative RoI-wise representations. We validate BADet both on widely used KITTI Dataset and highly challenging nuScenes Dataset. As of Apr. 17th, 2021, our BADet achieves on par performance on KITTI 3D detection leaderboard and ranks $1^{st}$ on $Moderate$ difficulty of $Car$ category on KITTI BEV detection leaderboard. The source code is available at https://github.com/rui-qian/BADet.

Dependencies

  • python3.5+
  • pytorch (tested on 1.1.0)
  • opencv
  • shapely
  • mayavi
  • spconv (v1.0)

Installation

  1. Clone this repository.
  2. Compile C++/CUDA modules in mmdet/ops by running the following command at each directory, e.g.
$ cd mmdet/ops/points_op
$ python3 setup.py build_ext --inplace
  1. Setup following Environment variables, you may add them to ~/.bashrc:
export NUMBAPRO_CUDA_DRIVER=/usr/lib/x86_64-linux-gnu/libcuda.so
export NUMBAPRO_NVVM=/usr/local/cuda/nvvm/lib64/libnvvm.so
export NUMBAPRO_LIBDEVICE=/usr/local/cuda/nvvm/libdevice
export LD_LIBRARY_PATH=/home/qianrui/anaconda3/lib/python3.7/site-packages/spconv;

Data Preparation

  1. Download the 3D KITTI detection dataset from here. Data to download include:

    • Velodyne point clouds (29 GB): input data to VoxelNet
    • Training labels of object data set (5 MB): input label to VoxelNet
    • Camera calibration matrices of object data set (16 MB): for visualization of predictions
    • Left color images of object data set (12 GB): for visualization of predictions
  2. Create cropped point cloud and sample pool for data augmentation, please refer to SECOND.

  3. Split the training set into training and validation set according to the protocol here.

  4. You could run the following command to prepare Data:

$ python3 tools/create_data.py

[email protected]:~/qianrui/kitti$ tree -L 1
data_root = '/home/qr/qianrui/kitti/'
├── gt_database
├── ImageSets
├── kitti_dbinfos_train.pkl
├── kitti_dbinfos_trainval.pkl
├── kitti_infos_test.pkl
├── kitti_infos_train.pkl
├── kitti_infos_trainval.pkl
├── kitti_infos_val.pkl
├── train.txt
├── trainval.txt
├── val.txt
├── test.txt
├── training   <-- training data
|       ├── image_2
|       ├── label_2
|       ├── velodyne
|       └── velodyne_reduced
└── testing  <--- testing data
|       ├── image_2
|       ├── label_2
|       ├── velodyne
|       └── velodyne_reduced

Pretrained Model

You can download the pretrained model [Model][Archive], which is trained on the train split (3712 samples) and evaluated on the val split (3769 samples) and test split (7518 samples). The performance (using 11 recall poisitions) on validation set is as follows:

[40, 1600, 1408]
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 3769/3769, 7.1 task/s, elapsed: 533s, ETA:     0s
Car [email protected], 0.70, 0.70:
bbox AP:98.27, 90.22, 89.66
bev  AP:90.59, 88.85, 88.09
3d   AP:90.06, 85.75, 78.98
aos  AP:98.18, 89.98, 89.25
Car [email protected], 0.50, 0.50:
bbox AP:98.27, 90.22, 89.66
bev  AP:98.31, 90.21, 89.73
3d   AP:98.20, 90.11, 89.61
aos  AP:98.18, 89.98, 89.25

Quick demo

You could run the following command to evaluate the pretrained model:

cd mmdet/tools
# vim ../configs/car_cfg.py(modify score_thr=0.4, score_thr=0.3 for val split and test split respectively.)
python3 test.py ../configs/car_cfg.py ../saved_model_vehicle/epoch_50.pth
Model Archive Parameters Moderate(Car) Pretrained Model Predicts
BADet(val) [Link] 44.2 MB 86.21% [icloud drive] [Results]
BADet(test) [Link] 44.2 MB 81.61% [icloud drive] [Results]

Training

To train the BADet with single GPU, run the following command:

cd mmdet/tools
python3 train.py ../configs/car_cfg.py

Inference

To evaluate the model, run the following command:

cd mmdet/tools
python3 test.py ../configs/car_cfg.py ../saved_model_vehicle/latest.pth

Acknowledgement

The code is devloped based on mmdetection, some part of codes are borrowed from SA-SSD, SECOND, and PointRCNN.

Contact

If you have questions, you can contact [email protected].

Owner
Rui Qian
Rui Qian
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022
Model Quantization Benchmark

Introduction MQBench is an open-source model quantization toolkit based on PyTorch fx. The envision of MQBench is to provide: SOTA Algorithms. With MQ

500 Jan 06, 2023
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

318 Dec 31, 2022
This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability.

Delayed-cellular-neural-network This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability. There is als

4 Apr 28, 2022
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
Disagreement-Regularized Imitation Learning

Due to a normalization bug the expert trajectories have lower performance than the rl_baseline_zoo reported experts. Please see the following link in

Kianté Brantley 25 Apr 28, 2022
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

EmbedSeg Introduction This repository hosts the version of the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

JugLab 88 Dec 25, 2022
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Project | Arxiv | YouTube | | Abstract In recent years, deep learning-based methods

CVSM Group - email: <a href=[email protected]"> 188 Dec 12, 2022
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma This repo provi

Jingtao Zhan 99 Dec 27, 2022
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
A curated (most recent) list of resources for Learning with Noisy Labels

A curated (most recent) list of resources for Learning with Noisy Labels

Jiaheng Wei 321 Jan 09, 2023
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

GRAAL/GRAIL 192 Dec 20, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a building extraction plugin of QGIS based on PaddlePaddle. TODO Extract building on 512x512 remote sensing images. Extract build

Yizhou Chen 11 Sep 26, 2022
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022