Hooks for VCOCO

Related tags

Deep Learningv-coco
Overview

Verbs in COCO (V-COCO) Dataset

This repository hosts the Verbs in COCO (V-COCO) dataset and associated code to evaluate models for the Visual Semantic Role Labeling (VSRL) task as ddescribed in this technical report.

Citing

If you find this dataset or code base useful in your research, please consider citing the following papers:

@article{gupta2015visual,
  title={Visual Semantic Role Labeling},
  author={Gupta, Saurabh and Malik, Jitendra},
  journal={arXiv preprint arXiv:1505.04474},
  year={2015}
}

@incollection{lin2014microsoft,
  title={Microsoft COCO: Common objects in context},
  author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
  booktitle={Computer Vision--ECCV 2014},
  pages={740--755},
  year={2014},
  publisher={Springer}
}

Installation

  1. Clone repository (recursively, so as to include COCO API).

    git clone --recursive https://github.com/s-gupta/v-coco.git
  2. This dataset builds off MS COCO, please download MS-COCO images and annotations.

  3. Current V-COCO release only uses a subset of MS-COCO images (Image IDs listed in data/splits/vcoco_all.ids). Use the following script to pick out annotations from the COCO annotations to allow faster loading in V-COCO.

    # Assume you cloned the repository to `VCOCO_DIR'
    cd $VCOCO_DIR
    # If you downloaded coco annotations to coco-data/annotations
    python script_pick_annotations.py coco-data/annotations
  4. Build coco/PythonAPI/pycocotools/_mask.so, cython_bbox.so.

    # Assume you cloned the repository to `VCOCO_DIR'
    cd $VCOCO_DIR/coco/PythonAPI/ && make
    cd $VCOCO_DIR && make

Using the dataset

  1. An IPython notebook, illustrating how to use the annotations in the dataset is available in V-COCO.ipynb
  2. The current release of the dataset includes annotations as indicated in Table 1 in the paper. We are collecting role annotations for the 6 categories (that are missing) and will make them public shortly.

Evaluation

We provide evaluation code that computes agent AP and role AP, as explained in the paper.

In order to use the evaluation code, store your predictions as a pickle file (.pkl) in the following format:

[ {'image_id':        # the coco image id,
   'person_box':      #[x1, y1, x2, y2] the box prediction for the person,
   '[action]_agent':  # the score for action corresponding to the person prediction,
   '[action]_[role]': # [x1, y1, x2, y2, s], the predicted box for role and 
                      # associated score for the action-role pair.
   } ]

Assuming your detections are stored in det_file=/path/to/detections/detections.pkl, do

from vsrl_eval import VCOCOeval
vcocoeval = VCOCOeval(vsrl_annot_file, coco_file, split_file)
  # e.g. vsrl_annot_file: data/vcoco/vcoco_val.json
  #      coco_file:       data/instances_vcoco_all_2014.json
  #      split_file:      data/splits/vcoco_val.ids
vcocoeval._do_eval(det_file, ovr_thresh=0.5)

We introduce two scenarios for role AP evaluation.

  1. [Scenario 1] In this scenario, for the test cases with missing role annotations an agent role prediction is correct if the action is correct & the overlap between the person boxes is >0.5 & the corresponding role is empty e.g. [0,0,0,0] or [NaN,NaN,NaN,NaN]. This scenario is fit for missing roles due to occlusion.

  2. [Scenario 2] In this scenario, for the test cases with missing role annotations an agent role prediction is correct if the action is correct & the overlap between the person boxes is >0.5 (the corresponding role is ignored). This scenario is fit for the cases with roles outside the COCO categories.

Owner
Saurabh Gupta
Saurabh Gupta
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
Enigma-Plus - Python based Enigma machine simulator with some extra features

Enigma-Plus Python based Enigma machine simulator with some extra features Examp

1 Jan 05, 2022
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.

Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai

SRI Lab, ETH Zurich 25 Sep 14, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
An Efficient Implementation of Analytic Mesh Algorithm for 3D Iso-surface Extraction from Neural Networks

AnalyticMesh Analytic Marching is an exact meshing solution from neural networks. Compared to standard methods, it completely avoids geometric and top

Karbo 45 Dec 21, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

167 Jan 02, 2023
ICLR 2021: Pre-Training for Context Representation in Conversational Semantic Parsing

SCoRe: Pre-Training for Context Representation in Conversational Semantic Parsing This repository contains code for the ICLR 2021 paper "SCoRE: Pre-Tr

Microsoft 28 Oct 02, 2022
A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

python_graphs This package is for computing graph representations of Python programs for machine learning applications. It includes the following modu

Google Research 258 Dec 29, 2022
Implementation of the Swin Transformer in PyTorch.

Swin Transformer - PyTorch Implementation of the Swin Transformer architecture. This paper presents a new vision Transformer, called Swin Transformer,

597 Jan 03, 2023
PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning PyTorch code for the ICCV 2021 paper: Always Be Dreaming: A New Approach f

49 Dec 21, 2022
Metadata-Extractor - Metadata Extractor Script can be used to read in exif metadata

Metadata Extractor The exifextract script can be used to read in exif metadata f

1 Feb 16, 2022
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.

Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU.

Phil Wang 2.3k Jan 09, 2023
COIN the currently largest dataset for comprehensive instruction video analysis.

COIN Dataset COIN is the currently largest dataset for comprehensive instruction video analysis. It contains 11,827 videos of 180 different tasks (i.e

86 Dec 28, 2022
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
A simple, fully convolutional model for real-time instance segmentation.

You Only Look At CoefficienTs ██╗ ██╗ ██████╗ ██╗ █████╗ ██████╗████████╗ ╚██╗ ██╔╝██╔═══██╗██║ ██╔══██╗██╔════╝╚══██╔══╝ ╚██

Daniel Bolya 4.6k Dec 30, 2022
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

82 Dec 15, 2022
This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et al. 2020

README This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et a

Raghav 42 Dec 15, 2022
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022