Stand-alone language identification system

Overview

langid.py readme

Introduction

langid.py is a standalone Language Identification (LangID) tool.

The design principles are as follows:

  1. Fast
  2. Pre-trained over a large number of languages (currently 97)
  3. Not sensitive to domain-specific features (e.g. HTML/XML markup)
  4. Single .py file with minimal dependencies
  5. Deployable as a web service

All that is required to run langid.py is >= Python 2.7 and numpy. The main script langid/langid.py is cross-compatible with both Python2 and Python3, but the accompanying training tools are still Python2-only.

langid.py is WSGI-compliant. langid.py will use fapws3 as a web server if available, and default to wsgiref.simple_server otherwise.

langid.py comes pre-trained on 97 languages (ISO 639-1 codes given):

af, am, an, ar, as, az, be, bg, bn, br, bs, ca, cs, cy, da, de, dz, el, en, eo, es, et, eu, fa, fi, fo, fr, ga, gl, gu, he, hi, hr, ht, hu, hy, id, is, it, ja, jv, ka, kk, km, kn, ko, ku, ky, la, lb, lo, lt, lv, mg, mk, ml, mn, mr, ms, mt, nb, ne, nl, nn, no, oc, or, pa, pl, ps, pt, qu, ro, ru, rw, se, si, sk, sl, sq, sr, sv, sw, ta, te, th, tl, tr, ug, uk, ur, vi, vo, wa, xh, zh, zu

The training data was drawn from 5 different sources:

  • JRC-Acquis
  • ClueWeb 09
  • Wikipedia
  • Reuters RCV2
  • Debian i18n

Usage

langid.py [options]
Options:
-h, --help show this help message and exit
-s, --serve launch web service
--host=HOST host/ip to bind to
--port=PORT port to listen on
-v increase verbosity (repeat for greater effect)
-m MODEL load model from file
-l LANGS, --langs=LANGS
  comma-separated set of target ISO639 language codes (e.g en,de)
-r, --remote auto-detect IP address for remote access
-b, --batch specify a list of files on the command line
--demo launch an in-browser demo application
-d, --dist show full distribution over languages
-u URL, --url=URL
  langid of URL
--line process pipes line-by-line rather than as a document
-n, --normalize
  normalize confidence scores to probability values

The simplest way to use langid.py is as a command-line tool, and you can invoke using python langid.py. If you installed langid.py as a Python module (e.g. via pip install langid), you can invoke langid instead of python langid.py -n (the two are equivalent). This will cause a prompt to display. Enter text to identify, and hit enter:

>>> This is a test
('en', -54.41310358047485)
>>> Questa e una prova
('it', -35.41771221160889)

langid.py can also detect when the input is redirected (only tested under Linux), and in this case will process until EOF rather than until newline like in interactive mode:

python langid.py < README.rst
('en', -22552.496054649353)

The value returned is the unnormalized probability estimate for the language. Calculating the exact probability estimate is disabled by default, but can be enabled through a flag:

python langid.py -n < README.rst
('en', 1.0)

More details are provided in this README in the section on Probability Normalization.

You can also use langid.py as a Python library:

# python
Python 2.7.2+ (default, Oct  4 2011, 20:06:09)
[GCC 4.6.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import langid
>>> langid.classify("This is a test")
('en', -54.41310358047485)

Finally, langid.py can use Python's built-in wsgiref.simple_server (or fapws3 if available) to provide language identification as a web service. To do this, launch python langid.py -s, and access http://localhost:9008/detect . The web service supports GET, POST and PUT. If GET is performed with no data, a simple HTML forms interface is displayed.

The response is generated in JSON, here is an example:

{"responseData": {"confidence": -54.41310358047485, "language": "en"}, "responseDetails": null, "responseStatus": 200}

A utility such as curl can be used to access the web service:

# curl -d "q=This is a test" localhost:9008/detect
{"responseData": {"confidence": -54.41310358047485, "language": "en"}, "responseDetails": null, "responseStatus": 200}

You can also use HTTP PUT:

# curl -T readme.rst localhost:9008/detect
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                               Dload  Upload   Total   Spent    Left  Speed
100  2871  100   119  100  2752    117   2723  0:00:01  0:00:01 --:--:--  2727
{"responseData": {"confidence": -22552.496054649353, "language": "en"}, "responseDetails": null, "responseStatus": 200}

If no "q=XXX" key-value pair is present in the HTTP POST payload, langid.py will interpret the entire file as a single query. This allows for redirection via curl:

# echo "This is a test" | curl -d @- localhost:9008/detect
{"responseData": {"confidence": -54.41310358047485, "language": "en"}, "responseDetails": null, "responseStatus": 200}

langid.py will attempt to discover the host IP address automatically. Often, this is set to localhost(127.0.1.1), even though the machine has a different external IP address. langid.py can attempt to automatically discover the external IP address. To enable this functionality, start langid.py with the -r flag.

langid.py supports constraining of the output language set using the -l flag and a comma-separated list of ISO639-1 language codes (the -n flag enables probability normalization):

# python langid.py -n -l it,fr
>>> Io non parlo italiano
('it', 0.99999999988965627)
>>> Je ne parle pas français
('fr', 1.0)
>>> I don't speak english
('it', 0.92210605672341062)

When using langid.py as a library, the set_languages method can be used to constrain the language set:

python
Python 2.7.2+ (default, Oct  4 2011, 20:06:09)
[GCC 4.6.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import langid
>>> langid.classify("I do not speak english")
('en', 0.57133487679900674)
>>> langid.set_languages(['de','fr','it'])
>>> langid.classify("I do not speak english")
('it', 0.99999835791478453)
>>> langid.set_languages(['en','it'])
>>> langid.classify("I do not speak english")
('en', 0.99176190378750373)

Batch Mode

langid.py supports batch mode processing, which can be invoked with the -b flag. In this mode, langid.py reads a list of paths to files to classify as arguments. If no arguments are supplied, langid.py reads the list of paths from stdin, this is useful for using langid.py with UNIX utilities such as find.

In batch mode, langid.py uses multiprocessing to invoke multiple instances of the classifier, utilizing all available CPUs to classify documents in parallel.

Probability Normalization

The probabilistic model implemented by langid.py involves the multiplication of a large number of probabilities. For computational reasons, the actual calculations are implemented in the log-probability space (a common numerical technique for dealing with vanishingly small probabilities). One side-effect of this is that it is not necessary to compute a full probability in order to determine the most probable language in a set of candidate languages. However, users sometimes find it helpful to have a "confidence" score for the probability prediction. Thus, langid.py implements a re-normalization that produces an output in the 0-1 range.

langid.py disables probability normalization by default. For command-line usages of langid.py, it can be enabled by passing the -n flag. For probability normalization in library use, the user must instantiate their own LanguageIdentifier. An example of such usage is as follows:

>> from langid.langid import LanguageIdentifier, model
>> identifier = LanguageIdentifier.from_modelstring(model, norm_probs=True)
>> identifier.classify("This is a test")
('en', 0.9999999909903544)

Training a model

We provide a full set of training tools to train a model for langid.py on user-supplied data. The system is parallelized to fully utilize modern multiprocessor machines, using a sharding technique similar to MapReduce to allow parallelization while running in constant memory.

The full training can be performed using the tool train.py. For research purposes, the process has been broken down into indiviual steps, and command-line drivers for each step are provided. This allows the user to inspect the intermediates produced, and also allows for some parameter tuning without repeating some of the more expensive steps in the computation. By far the most expensive step is the computation of information gain, which will make up more than 90% of the total computation time.

The tools are:

  1. index.py - index a corpus. Produce a list of file, corpus, language pairs.
  2. tokenize.py - take an index and tokenize the corresponding files
  3. DFfeatureselect.py - choose features by document frequency
  4. IGweight.py - compute the IG weights for language and for domain
  5. LDfeatureselect.py - take the IG weights and use them to select a feature set
  6. scanner.py - build a scanner on the basis of a feature set
  7. NBtrain.py - learn NB parameters using an indexed corpus and a scanner

The tools can be found in langid/train subfolder.

Each tool can be called with --help as the only parameter to provide an overview of the functionality.

To train a model, we require multiple corpora of monolingual documents. Each document should be a single file, and each file should be in a 2-deep folder hierarchy, with language nested within domain. For example, we may have a number of English files:

./corpus/domain1/en/File1.txt ./corpus/domainX/en/001-file.xml

To use default settings, very few parameters need to be provided. Given a corpus in the format described above at ./corpus, the following is an example set of invocations that would result in a model being trained, with a brief description of what each step does.

To build a list of training documents:

python index.py ./corpus

This will create a directory corpus.model, and produces a list of paths to documents in the corpus, with their associated language and domain.

We then tokenize the files using the default byte n-gram tokenizer:

python tokenize.py corpus.model

This runs each file through the tokenizer, tabulating the frequency of each token according to language and domain. This information is distributed into buckets according to a hash of the token, such that all the counts for any given token will be in the same bucket.

The next step is to identify the most frequent tokens by document frequency:

python DFfeatureselect.py corpus.model

This sums up the frequency counts per token in each bucket, and produces a list of the highest-df tokens for use in the IG calculation stage. Note that this implementation of DFfeatureselect assumes byte n-gram tokenization, and will thus select a fixed number of features per ngram order. If tokenization is replaced with a word-based tokenizer, this should be replaced accordingly.

We then compute the IG weights of each of the top features by DF. This is computed separately for domain and for language:

python IGweight.py -d corpus.model
python IGweight.py -lb corpus.model

Based on the IG weights, we compute the LD score for each token:

python LDfeatureselect.py corpus.model

This produces the final list of LD features to use for building the NB model.

We then assemble the scanner:

python scanner.py corpus.model

The scanner is a compiled DFA over the set of features that can be used to count the number of times each of the features occurs in a document in a single pass over the document. This DFA is built using Aho-Corasick string matching.

Finally, we learn the actual Naive Bayes parameters:

python NBtrain.py corpus.model

This performs a second pass over the entire corpus, tokenizing it with the scanner from the previous step, and computing the Naive Bayes parameters P(C) and p(t|C). It then compiles the parameters and the scanner into a model compatible with langid.py.

In this example, the final model will be at the following path:

./corpus.model/model

This model can then be used in langid.py by invoking it with the -m command-line option as follows:

python langid.py -m ./corpus.model/model

It is also possible to edit langid.py directly to embed the new model string.

Read more

langid.py is based on our published research. [1] describes the LD feature selection technique in detail, and [2] provides more detail about the module langid.py itself. [3] compares the speed of langid.py to Google's Chrome CLD2, as well as my own pure-C implementation and the authors' implementation on specialized hardware.

[1] Lui, Marco and Timothy Baldwin (2011) Cross-domain Feature Selection for Language Identification, In Proceedings of the Fifth International Joint Conference on Natural Language Processing (IJCNLP 2011), Chiang Mai, Thailand, pp. 553—561. Available from http://www.aclweb.org/anthology/I11-1062

[2] Lui, Marco and Timothy Baldwin (2012) langid.py: An Off-the-shelf Language Identification Tool, In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (ACL 2012), Demo Session, Jeju, Republic of Korea. Available from www.aclweb.org/anthology/P12-3005

[3] Kenneth Heafield and Rohan Kshirsagar and Santiago Barona (2015) Language Identification and Modeling in Specialized Hardware, In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). Available from http://aclweb.org/anthology/P15-2063

Contact

Marco Lui <[email protected]>

I appreciate any feedback, and I'm particularly interested in hearing about places where langid.py is being used. I would love to know more about situations where you have found that langid.py works well, and about any shortcomings you may have found.

Acknowledgements

Thanks to aitzol for help with packaging langid.py for PyPI. Thanks to pquentin for suggestions and improvements to packaging.

Related Implementations

Dawid Weiss has ported langid.py to Java, with a particular focus on speed and memory use. Available from https://github.com/carrotsearch/langid-java

I have written a Pure-C version of langid.py, which an external evaluation (see Read more) has found to be up to 20x as fast as the pure Python implementation here. Available from https://github.com/saffsd/langid.c

I have also written a JavaScript version of langid.py which runs entirely in the browser. Available from https://github.com/saffsd/langid.js

Changelog

v1.0:
  • Initial release
v1.1:
  • Reorganized internals to implement a LanguageIdentifier class
v1.1.2:
  • Added a 'langid' entry point
v1.1.3:
  • Made classify and rank return Python data types rather than numpy ones
v1.1.4:
  • Added set_languages to __init__.py, fixing #10 (and properly fixing #8)
v1.1.5:
  • remove dev tag
  • add PyPi classifiers, fixing #34 (thanks to pquentin)
v1.1.6:
  • make nb_numfeats an int, fixes #46, thanks to @remibolcom
Source code for CsiNet and CRNet using Fully Connected Layer-Shared feedback architecture.

FCS-applications Source code for CsiNet and CRNet using the Fully Connected Layer-Shared feedback architecture. Introduction This repository contains

Boyuan Zhang 4 Oct 07, 2022
This repository implements a brute-force spellchecker utilizing the Damerau-Levenshtein edit distance.

About spellchecker.py Implementing a highly-accurate, brute-force, and dynamically programmed spellchecking program that utilizes the Damerau-Levensht

Raihan Ahmed 1 Dec 11, 2021
Tools to download and cleanup Common Crawl data

cc_net Tools to download and clean Common Crawl as introduced in our paper CCNet. If you found these resources useful, please consider citing: @inproc

Meta Research 483 Jan 02, 2023
Question and answer retrieval in Turkish with BERT

trfaq Google supported this work by providing Google Cloud credit. Thank you Google for supporting the open source! 🎉 What is this? At this repo, I'm

M. Yusuf Sarıgöz 13 Oct 10, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Highlights The strongest performances Tracker

Multimedia Research 485 Jan 04, 2023
中文空间语义理解评测

中文空间语义理解评测 最新消息 2021-04-10 🚩 排行榜发布: Leaderboard 2021-04-05 基线系统发布: SpaCE2021-Baseline 2021-04-05 开放数据提交: 提交结果 2021-04-01 开放报名: 我要报名 2021-04-01 数据集 pa

40 Jan 04, 2023
voice2json is a collection of command-line tools for offline speech/intent recognition on Linux

Command-line tools for speech and intent recognition on Linux

Michael Hansen 988 Jan 04, 2023
Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.

Flexible interface for high performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra. What is Lightning Tran

Pytorch Lightning 581 Dec 21, 2022
Generate a cool README/About me page for your Github Profile

Github Profile README/ About Me Generator 💯 This webapp lets you build a cool README for your profile. A few inputs + ~15 mins = Your Github Profile

Rahul Banerjee 179 Jan 07, 2023
Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Ubiquitous Knowledge Processing Lab 59 Dec 01, 2022
Task-based datasets, preprocessing, and evaluation for sequence models.

SeqIO: Task-based datasets, preprocessing, and evaluation for sequence models. SeqIO is a library for processing sequential data to be fed into downst

Google 290 Dec 26, 2022
A flask application to predict the speech emotion of any .wav file.

This is a speech emotion recognition app. It will allow you to train a modular MLP model with the RAVDESS dataset, and then use that model with a flask application to predict the speech emotion of an

Aryan Vijaywargia 2 Dec 15, 2021
Model for recasing and repunctuating ASR transcripts

Recasing and punctuation model based on Bert Benoit Favre 2021 This system converts a sequence of lowercase tokens without punctuation to a sequence o

Benoit Favre 88 Dec 29, 2022
SDL: Synthetic Document Layout dataset

SDL is the project that synthesizes document images. It facilitates multiple-level labeling on document images and can generate in multiple languages.

Sơn Nguyễn 0 Oct 07, 2021
Installation, test and evaluation of Scribosermo speech-to-text engine

Scribosermo STT Setup Scribosermo is a LGPL licensed, open-source speech recognition engine to "Train fast Speech-to-Text networks in different langua

Florian Quirin 3 Jun 20, 2022
Pipelines de datos, 2021.

Este repo ilustra un proceso sencillo de automatización de transformación y modelado de datos, a través de un pipeline utilizando Luigi. Stack princip

Rodolfo Ferro 8 May 19, 2022
Code for "Finetuning Pretrained Transformers into Variational Autoencoders"

transformers-into-vaes Code for Finetuning Pretrained Transformers into Variational Autoencoders (our submission to NLP Insights Workshop 2021). Gathe

Seongmin Park 22 Nov 26, 2022
Implementation for paper BLEU: a Method for Automatic Evaluation of Machine Translation

BLEU Score Implementation for paper: BLEU: a Method for Automatic Evaluation of Machine Translation Author: Ba Ngoc from ProtonX BLEU score is a popul

Ngoc Nguyen Ba 6 Oct 07, 2021
Trankit is a Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing

Trankit: A Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing Trankit is a light-weight Transformer-based Pyth

652 Jan 06, 2023
LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation

LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation Tasks | Datasets | LongLM | Baselines | Paper Introduction LOT is a ben

46 Dec 28, 2022