Local-Global Stratified Transformer for Efficient Video Recognition

Overview

DualFormer

This repo is the implementation of our manuscript entitled "Local-Global Stratified Transformer for Efficient Video Recognition". Our model is built on a popular video package called mmaction2. This repo also refers to the code templates provided by PVT, Twins and Swin. This repo is released under the Apache 2.0 license.

Introduction

DualFormer is a Transformer architecture that can effectively and efficiently perform space-time attention for video recognition. Specifically, our DualFormer stratifies the full space-time attention into dual cascaded levels, i.e., to first learn fine-grained local space-time interactions among nearby 3D tokens, followed by the capture of coarse-grained global dependencies between the query token and the coarse-grained global pyramid contexts. Experimental results show the superiority of DualFormer on five video benchmarks against existing methods. In particular, DualFormer sets new state-of-the-art 82.9%/85.2% top-1 accuracy on Kinetics-400/600 with ∼1000G inference FLOPs which is at least 3.2× fewer than existing methods with similar performances.

Installation & Requirement

Please refer to install.md for installation. The docker files are also provided for convenient usage - cuda10.1 and cuda11.0.

All models are trained on 8 Nvidia A100 GPUs. For example, training a DualFormer-T on Kinetics-400 takes ∼31 hours on 8 A100 GPUs, while training a larger model DualFormer-B on Kinetics-400 requires ∼3 days on 8 A100 GPUs.

Data Preparation

Please first see data_preparation.md for a general knowledge of data preparation.

  • For Kinetics-400/600, as these are dynamic datasets (videos may be removed from YouTube), we employ this repo to download the original files and the annotatoins. Only a few number of corrupted videos are removed (around 50).
  • For other datasets, i.e., HMDB-51, UCF-101 and Diving-48, we use the data downloader provided by mmaction2 as aforementioned.

The full supported datasets are listed below (more details in supported_datasets.md):

HMDB51 (Homepage) (ICCV'2011) UCF101 (Homepage) (CRCV-IR-12-01) ActivityNet (Homepage) (CVPR'2015) Kinetics-[400/600/700] (Homepage) (CVPR'2017)
SthV1 (Homepage) (ICCV'2017) SthV2 (Homepage) (ICCV'2017) Diving48 (Homepage) (ECCV'2018) Jester (Homepage) (ICCV'2019)
Moments in Time (Homepage) (TPAMI'2019) Multi-Moments in Time (Homepage) (ArXiv'2019) HVU (Homepage) (ECCV'2020) OmniSource (Homepage) (ECCV'2020)

Models

We present a major part of the model results, the configuration files, and downloading links in the following table. The FLOPs is computed by fvcore, where we omit the classification head since it has low impact to the FLOPs.

Dataset Version Pretrain GFLOPs Param (M) Top-1 Config Download
K400 Tiny IN-1K 240 21.8 79.5 link link
K400 Small IN-1K 636 48.9 80.6 link link
K400 Base IN-1K 1072 86.8 81.1 link link
K600 Base IN-22K 1072 86.8 85.2 link link
Diving-48 Small K400 1908 48.9 81.8 link link
HMDB-51 Small K400 1908 48.9 76.4 link link
UCF-101 Small K400 1908 48.9 97.5 link link

Visualization

We visualize the attention maps at the last layer of our model generated by Grad-CAM on Kinetics-400. As shown in the following three gifs, our model successfully learns to focus on the relevant parts in the video clip. Left: flying kites. Middle: counting money. Right: walking dogs.

You can use the following commend to visualize the attention weights:

python demo/demo_gradcam.py 
    
     
     
       --target-layer-name 
      
        --out-filename 
        
       
      
     
    
   

For example, to visualize the last layer of DualFormer-S on a K400 video (-cii-Z0dW2E_000020_000030.mp4), please run:

python demo/demo_gradcam.py \
    configs/recognition/dualformer/dualformer_small_patch244_window877_kinetics400_1k.py \
    checkpoints/k400/dualformer_small_patch244_window877.pth \
    /dataset/kinetics-400/train_files/-cii-Z0dW2E_000020_000030.mp4 \
    --target-layer-name backbone/blocks/3/3 --fps 10 \
    --out-filename output/-cii-Z0dW2E_000020_000030.gif

User Guide

Folder Structure

As our implementation is based on mmaction2, we specify our contributions as follows:

Testing

# single-gpu testing
python tools/test.py 
    
    
      --eval top_k_accuracy

# multi-gpu testing
bash tools/dist_test.sh 
      
       
       
         --eval top_k_accuracy 
       
      
     
    
   

Example 1: to validate a DualFormer-T model on Kinetics-400 dataset with 8 GPUs, please run:

bash tools/dist_test.sh configs/recognition/dualformer/dualformer_tiny_patch244_window877_kinetics400_1k.py checkpoints/k400/dualformer_tiny_patch244_window877.pth 8 --eval top_k_accuracy

You will obtain the result as follows:

Example 2: to validate a DualFormer-S model on Diving-48 dataset with 4 GPUs, please run:

bash tools/dist_test.sh configs/recognition/dualformer/dualformer_small_patch244_window877_diving48.py checkpoints/diving48/dualformer_small_patch244_window877.pth 4 --eval top_k_accuracy 

The output will be as follows:

Training from scratch

To train a video recognition model from scratch for Kinetics-400, please run:

# single-gpu training
python tools/train.py 
   
     [other optional arguments]

# multi-gpu training
bash tools/dist_train.sh 
     
     
       [other optional arguments]

     
    
   

For example, to train a DualFormer-T model for Kinetics-400 dataset with 8 GPUs, please run:

bash tools/dist_train.sh ./configs/recognition/dualformer/dualformer_tiny_patch244_window877_kinetics400_1k.py 8 

Training a DualFormer-S model for Kinetics-400 dataset with 8 GPUs, please run:

bash tools/dist_train.sh ./configs/recognition/dualformer/dualformer_small_patch244_window877_kinetics400_1k.py 8 

Training with pre-trained 2D models

To train a video recognition model with pre-trained image models, please run:

# single-gpu training
python tools/train.py 
   
     --cfg-options model.backbone.pretrained=
    
      [model.backbone.use_checkpoint=True] [other optional arguments]

# multi-gpu training
bash tools/dist_train.sh 
      
      
        --cfg-options model.backbone.pretrained=
       
         [model.backbone.use_checkpoint=True] [other optional arguments] 
       
      
     
    
   

For example, to train a DualFormer-T model for Kinetics-400 dataset with 8 GPUs, please run:

bash tools/dist_train.sh ./configs/recognition/dualformer/dualformer_tiny_patch244_window877_kinetics400_1k.py 8 --cfg-options model.backbone.pretrained=
    

   

Training a DualFormer-B model for Kinetics-400 dataset with 8 GPUs, please run:

bash tools/dist_train.sh ./configs/recognition/dualformer/dualformer_base_patch244_window877_kinetics400_1k.py 8 --cfg-options model.backbone.pretrained=
    

   

Note: use_checkpoint is used to save GPU memory. Please refer to this page for more details.

Training with Token Labelling

We also present the first attempt to improve the video recognition model by generalizing Token Labelling to videos as additional augmentations, in which MixToken is turned off as it does not work on our video datasets. For instance, to train a small version of DualFormer using DualFormer-B as the annotation model on the fly, please run:

bash tools/dist_train.sh configs/recognition/dualformer/dualformer_tiny_tokenlabel_patch244_window877_kinetics400_1k.py 8 --cfg-options model.backbone.pretrained='checkpoints/pretrained_2d/dualformer_tiny.pth' --validate 

Notice that we place the checkpoint of the annotation model at 'checkpoints/k400/dualformer_base_patch244_window877.pth'. You can change it to anywhere you want, or modify the path variable in this file.

We present two examples of visualization of token labelling on video data. For simiplicity, we omit several frames and thus each example only shows 5 frames with uniform sampling rate. For each frame, each value p(i,j) on the left hand side means the pseudo label (index) at each patch of the last stage provided by the annotation model.

  • Visualization example 1 (Correct label: pushing cart, index: 262).
  • Visualization example 2 (Correct label: dribbling basketball, index: 99).

              

Apex (optional):

We use apex for mixed precision training by default. To install apex, use our provided docker or run:

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

If you would like to disable apex, comment out the following code block in the configuration files:

# do not use mmcv version fp16
fp16 = None
optimizer_config = dict(
    type="DistOptimizerHook",
    update_interval=1,
    grad_clip=None,
    coalesce=True,
    bucket_size_mb=-1,
    use_fp16=True,
)

Citation

If you find our work useful in your research, please cite:

@article{liang2021dualformer,
         title={DualFormer: Local-Global Stratified Transformer for Efficient Video Recognition}, 
         author={Yuxuan Liang and Pan Zhou and Roger Zimmermann and Shuicheng Yan},
         year={2021},
         journal={arXiv preprint arXiv:2112.04674},
}

Acknowledgement

We would like to thank the authors of the following helpful codebases:

Please kindly consider star these related packages as well. Thank you much for your attention.

Owner
Sea AI Lab
Sea AI Lab
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
Harmonic Memory Networks for Graph Completion

HMemNetworks Code and documentation for Harmonic Memory Networks, a series of models for compositionally assembling representations of graph elements

mlalisse 0 Oct 27, 2021
On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation On Nonlinear Latent Transformations for GAN-based Image Editi

Valentin Khrulkov 22 Oct 24, 2022
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023
🔊 Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
Perturb-and-max-product: Sampling and learning in discrete energy-based models

Perturb-and-max-product: Sampling and learning in discrete energy-based models This repo contains code for reproducing the results in the paper Pertur

Vicarious 2 Mar 14, 2022
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Ro

Meta Research 1.2k Jan 02, 2023
Multi-Scale Progressive Fusion Network for Single Image Deraining

Multi-Scale Progressive Fusion Network for Single Image Deraining (MSPFN) This is an implementation of the MSPFN model proposed in the paper (Multi-Sc

Kuijiang 128 Nov 21, 2022
Fast Soft Color Segmentation

Fast Soft Color Segmentation

3 Oct 29, 2022
High frequency AI based algorithmic trading module.

Flow Flow is a high frequency algorithmic trading module that uses machine learning to self regulate and self optimize for maximum return. The current

59 Dec 14, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

Microsoft 125 Jan 04, 2023
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Shōgun

The SHOGUN machine learning toolbox Unified and efficient Machine Learning since 1999. Latest release: Cite Shogun: Develop branch build status: Donat

Shōgun ML 2.9k Jan 04, 2023
Yet another video caption

Yet another video caption

Fan Zhimin 5 May 26, 2022
Reinforcement learning algorithms in RLlib

raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b

Ângelo 50 Sep 08, 2022