Direct Multi-view Multi-person 3D Human Pose Estimation

Related tags

Miscellaneousmvp
Overview

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation

[paper] [video-YouTube, video-Bilibili] [slides]

This is the official implementation of our NeurIPS-2021 work: Multi-view Pose Transformer (MvP). MvP is a simple algorithm that directly regresses multi-person 3D human pose from multi-view images.

Framework

mvp_framework

Example Result

mvp_framework

Reference

@article{wang2021mvp,
  title={Direct Multi-view Multi-person 3D Human Pose Estimation},
  author={Tao Wang and Jianfeng Zhang and Yujun Cai and Shuicheng Yan and Jiashi Feng},
  journal={Advances in Neural Information Processing Systems},
  year={2021}
}

1. Installation

  1. Set the project root directory as ${POSE_ROOT}.
  2. Install all the required python packages (with requirements.txt).
  3. compile deformable operation for projective attention.
cd ./models/ops
sh ./make.sh

2. Data and Pre-trained Model Preparation

2.1 CMU Panoptic

Please follow VoxelPose to download the CMU Panoptic Dataset and PoseResNet-50 pre-trained model.

The directory tree should look like this:

${POSE_ROOT}
|-- models
|   |-- pose_resnet50_panoptic.pth.tar
|-- data
|   |-- panoptic
|   |   |-- 16060224_haggling1
|   |   |   |-- hdImgs
|   |   |   |-- hdvideos
|   |   |   |-- hdPose3d_stage1_coco19
|   |   |   |-- calibration_160224_haggling1.json
|   |   |-- 160226_haggling1
|   |   |-- ...

2.2 Shelf/Campus

Please follow VoxelPose to download the Shelf/Campus Dataset.

Due to the limited and incomplete annotations of the two datasets, we use psudo ground truth 3D pose generated from VoxelPose to train the model, we expect mvp would perform much better with absolute ground truth pose data.

Please use voxelpose or other methods to generate psudo ground truth for the training set, you can also use our generated psudo GT: psudo_gt_shelf. psudo_gt_campus. psudo_gt_campus_fix_gtmorethanpred.

Due to the small dataset size, we fine-tune Panoptic pre-trained model to Shelf and Campus. Download the pretrained MvP on Panoptic from model_best_5view and model_best_3view_horizontal_view or model_best_3view_2horizon_1lookdown

The directory tree should look like this:

${POSE_ROOT}
|-- models
|   |-- model_best_5view.pth.tar
|   |-- model_best_3view_horizontal_view.pth.tar
|   |-- model_best_3view_2horizon_1lookdown.pth.tar
|-- data
|   |-- Shelf
|   |   |-- Camera0
|   |   |-- ...
|   |   |-- Camera4
|   |   |-- actorsGT.mat
|   |   |-- calibration_shelf.json
|   |   |-- pesudo_gt
|   |   |   |-- voxelpose_pesudo_gt_shelf.pickle
|   |-- CampusSeq1
|   |   |-- Camera0
|   |   |-- Camera1
|   |   |-- Camera2
|   |   |-- actorsGT.mat
|   |   |-- calibration_campus.json
|   |   |-- pesudo_gt
|   |   |   |-- voxelpose_pesudo_gt_campus.pickle
|   |   |   |-- voxelpose_pesudo_gt_campus_fix_gtmorethanpred_case.pickle

2.3 Human3.6M dataset

Please follow CHUNYUWANG/H36M-Toolbox to prepare the data.

2.4 Full Directory Tree

The data and pre-trained model directory tree should look like this, you can only download the Panoptic dataset and PoseResNet-50 for reproducing the main MvP result and ablation studies:

${POSE_ROOT}
|-- models
|   |-- pose_resnet50_panoptic.pth.tar
|   |-- model_best_5view.pth.tar
|   |-- model_best_3view_horizontal_view.pth.tar
|   |-- model_best_3view_2horizon_1lookdown.pth.tar
|-- data
|   |-- pesudo_gt
|   |   |-- voxelpose_pesudo_gt_shelf.pickle
|   |   |-- voxelpose_pesudo_gt_campus.pickle
|   |   |-- voxelpose_pesudo_gt_campus_fix_gtmorethanpred_case.pickle
|   |-- panoptic
|   |   |-- 16060224_haggling1
|   |   |   |-- hdImgs
|   |   |   |-- hdvideos
|   |   |   |-- hdPose3d_stage1_coco19
|   |   |   |-- calibration_160224_haggling1.json
|   |   |-- 160226_haggling1
|   |   |-- ...
|   |-- Shelf
|   |   |-- Camera0
|   |   |-- ...
|   |   |-- Camera4
|   |   |-- actorsGT.mat
|   |   |-- calibration_shelf.json
|   |   |-- pesudo_gt
|   |   |   |-- voxelpose_pesudo_gt_shelf.pickle
|   |-- CampusSeq1
|   |   |-- Camera0
|   |   |-- Camera1
|   |   |-- Camera2
|   |   |-- actorsGT.mat
|   |   |-- calibration_campus.json
|   |   |-- pesudo_gt
|   |   |   |-- voxelpose_pesudo_gt_campus.pickle
|   |   |   |-- voxelpose_pesudo_gt_campus_fix_gtmorethanpred_case.pickle
|   |-- HM36

3. Training and Evaluation

The evaluation result will be printed after every epoch, the best result can be found in the log.

3.1 CMU Panoptic dataset

We train and validate on the five selected camera views. We trained our models on 8 GPUs and batch_size=1 for each GPU, note the total iteration per epoch should be 3205, if not, please check your data.

python -m torch.distributed.launch --nproc_per_node=8 --use_env run/train_3d.py --cfg configs/panoptic/best_model_config.yaml

Pre-trained models

Datasets AP25 AP25 AP25 AP25 MPJPE pth
Panoptic 92.3 96.6 97.5 97.7 15.8 here

3.1.1 Ablation Experiments

You can find several ablation experiment configs under ./configs/panoptic/, for example, removing RayConv:

python -m torch.distributed.launch --nproc_per_node=8 --use_env run/train_3d.py --cfg configs/panoptic/ablation_remove_rayconv.yaml

3.2 Shelf/Campus datasets

As shelf/campus are very small dataset with incomplete annotation, we finetune pretrained MvP with pseudo ground truth 3D pose extracted with VoxelPose, we expect more accurate GT would help MvP achieve much higher performance.

python -m torch.distributed.launch --nproc_per_node=8 --use_env run/train_3d.py --cfg configs/shelf/mvp_shelf.yaml

Pre-trained models

Datasets Actor 1 Actor 2 Actor 2 Average pth
Shelf 99.3 95.1 97.8 97.4 here
Campus 98.2 94.1 97.4 96.6 here

3.3 Human3.6M dataset

MvP also applies to the naive single-person setting, with dataset like Human3.6, to come

python -m torch.distributed.launch --nproc_per_node=8 --use_env run/train_3d.py --cfg configs/h36m/mvp_h36m.yaml

4. Evaluation Only

To evaluate a trained model, pass the config and model pth:

python -m torch.distributed.launch --nproc_per_node=8 --use_env run/validate_3d.py --cfg xxx --model_path xxx

LICENSE

This repo is under the Apache-2.0 license. For commercial use, please contact the authors.

Owner
Sea AI Lab
Sea AI Lab
Never see escaped bytes in output.

Uniout It makes Python print the object representation in readable chars instead of the escaped string. Example from pprint import pprint lang

Mosky Liu 156 Oct 21, 2022
Repository for my Monika Assistant project

Monika_Assistant Repository for my Monika Assistant project Major changes: Added face tracker Added manual daily log to see how long it takes me to fi

3 Jan 10, 2022
token vesting escrow with cliff and clawback

Yearn Vesting Escrow A modified version of Curve Vesting Escrow contracts with added functionality: An escrow can have a start_date in the past.

62 Dec 08, 2022
Ronin - Create Fud Meterpreter Payload To Hack Windows 11

Ronin - Create Fud Meterpreter Payload To Hack Windows 11

Dj4w3d H4mm4di 6 May 09, 2022
Covid-ChatBot - A Rapid Response Virtual Agent for Covid-19 Queries

COVID-19 CHatBot A Rapid Response Virtual Agent for Covid-19 Queries Contents What is ChatBot Types of ChatBots About the Project Dataset Prerequisite

NelakurthiSudheer 2 Jan 04, 2022
Thumbor-bootcamp - learning and contribution experience with ❤️ and 🤗 from the thumbor team

Thumbor-bootcamp - learning and contribution experience with ❤️ and 🤗 from the thumbor team

Thumbor (by @globocom) 9 Jul 11, 2022
TeamFleming is a multicultural group of 20 young bioinformatics enthusiasts participating in the 2021 HackBio Virtual Summer Internship

💻 Welcome to Team Fleming's Repo! #TeamFleming is a multicultural group of 20 young bioinformatics enthusiasts participating in the 2021 HackBio Virt

3 Aug 08, 2021
a package that provides a marketstrategy for whitelisting on golem

filterms a package that provides a marketstrategy for whitelisting on golem watching requestor logs distribute 10 tasks asynchronously is fun. but you

KJM 3 Aug 03, 2022
A novel dual model approach for categorization of unbalanced skin lesion image classes (Presented technical paper 📃)

A novel dual model approach for categorization of unbalanced skin lesion image classes (Presented technical paper 📃)

1 Jan 19, 2022
Python bilgilerimi eğlenceli bir şekilde hatırlamak ve daha da geliştirmek için The Big Book of Small Python Projects isimli bir kitap almıştım.

Python bilgilerimi eğlenceli bir şekilde hatırlamak ve daha da geliştirmek için The Big Book of Small Python Projects isimli bir kitap almıştım. Bu repo kitaptaki örnek programları çalıştığım oyun al

Burak Selim Senyurt 22 Oct 26, 2022
Draw random mazes in python

a-maze Draw random mazes in python This program generates and draws a rectangular maze, with an entrance on one side and one on the opposite side. The

Andrea Pasquali 1 Nov 21, 2021
Fixes your Microphone Level to one specific value.

MicLeveler Fixes your Microphone Level to one specific value. Intention A friend of mine has the problem that some programs are setting his microphone

Moritz Timpe 2 Oct 14, 2021
pybicyclewheel calulates the required spoke length for bicycle wheels

pybicyclewheel pybicyclewheel calulates the required spoke length for bicycle wheels. (under construcion) - homepage further readings wikipedia bicyc

karl 0 Aug 24, 2022
x-tools is a collection of tools developed in Python

x-tools X-tools is a collection of tools developed in Python Commands\

5 Jan 24, 2022
ViberExport - Export messages from Viber messenger using viber.db file

📲 ViberExport Export messages from Viber messenger using viber.db file ⚡ Usage:

7 Nov 23, 2022
Backup dc registry - A simple POC that abuses Backup Operator privileges to remote dump SAM, SYSTEM, and SECURITY

Backup Operator Registry Backup to Domain Compromise A simple POC that abuses Ba

Horizon 3 AI Inc 57 Dec 18, 2022
Keyboard Layout Change - Extension for Ulauncher

Keyboard Layout Change - Extension for Ulauncher

Marco Borchi 4 Aug 26, 2022
Python 3 script for installing kali tools on your linux machine

Python 3 script for installing kali tools on your linux machine

gh0st 2 Apr 20, 2022
Git Hooks Tutorial.

Git Hooks Tutorial My public talk about this project at Sberloga: Git Hooks Is All You Need 1. Git Hooks 101 Init git repo: mkdir git_repo cd git_repo

Dani El-Ayyass 17 Oct 12, 2022
dragmap-meth: Fast and accurate aligner for bisulfite sequencing reads using dragmap

dragmap_meth (dragmap_meth.py) Alignment of BS-Seq reads using dragmap. Intro This works for single-end reads and for paired-end reads from the direct

Shaojun Xie 3 Jul 14, 2022