Measure WWjj polarization fraction

Overview

WlWl Polarization

Measure WWjj polarization fraction

sm sm_lltt sm_lttl

Paper: arXiv:2109.09924
Notice: This code can only be used for the inference process, if you want to train your own model, please contact [email protected].

Requirements

  • Both Linux and Windows are supported.
  • 64-bit Python3.6(or higher, recommend 3.8) installation.
  • Tensorflow2.x(recommend 2.6), Numpy(recommend 1.19.5), Matplotlib(recommend 3.4.2)
  • One or more high-end NVIDIA GPUs(at least 4 GB of DRAM), NVIDIA drivers, CUDA(recommend 11.4) toolkit and cuDNN(recommend 8.2.x).

Preparing dataset

The raw dataset needs to be transformed before it can be imported into the model.

  • You need to create a raw dataset(we provide a test dataset, stored in ./raw/), the data structure is as follows:
The file has N events:
   Event 1
   Event 2
   ...
   Event N
One event for every 6 lines:
   1. first lepton 
   2. second lepton 
   3. first FB jet 
   4. second FB jet 
   5. MET 
   6. remaining jet 
Each line has the following five columns of elements:
   1.ParticleID  2.Px  3.Py  4.Pz  5.E
The format of an event in the dataset is as follows:
   ...
   -1.0  166.023   5.35817   10.784    166.459
   1.0   -36.1648  -64.1513  -28.9064  79.113
   7.0   -11.3233  -39.6316  -318.178  320.85
   7.0   -34.2795  22.0472   622.79    624.128
   0.0   -22.6711  52.8976   -422.567  426.468
   6.0   -49.9758  29.3283   274.517   294.098
   ...

ParticleID: 1 for electron, 2 for muon, 3 for tau, 4 for b-jet, 5 for normal jet, 0 for met, 6 for remaining jets, 7 for forward backward jet, signs represent electric charge.

  • Use the command python create_dataset.py YOUR_RAWDATA_PATH, it will create a file with the same name as YOUR_RAWDATA_PATH in the ./dataset/.

Using pre-trained models

After completing the preparation of the dataset, you can use the model to predict the polarization fraction.

  • Pre-trained weights are placed in ./weights/.
  • Use the command python inference.py --dataset YOUR_TRADATA_NAME --model_name <MODEL_NAME> --energy_level <ENERGY_LEVEL>, it will give the polarization fractions.

Notice: <ENERGY_LEVEL> should correspond to the collision energy of events.

Example

Run the following command to get the polarization fractions for the standard model:

python create_dataset.py ./raw/sm.dat
python inference.py --dataset sm --model_name TRANS --energy_level 13

Citation

@misc{li2021polarization,
    title={Polarization measurement for the dileptonic channel of $W^+ W^-$ scattering using generative adversarial network},
    author={Jinmian Li and Cong Zhang and Rao Zhang},
    year={2021},
    eprint={2109.09924},
    archivePrefix={arXiv},
    primaryClass={hep-ph}
}
BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

BasicRL: easy and fundamental codes for deep reinforcement learning BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up. It is

RayYoh 12 Apr 28, 2022
SMPL-X: A new joint 3D model of the human body, face and hands together

SMPL-X: A new joint 3D model of the human body, face and hands together [Paper Page] [Paper] [Supp. Mat.] Table of Contents License Description News I

Vassilis Choutas 1k Jan 09, 2023
PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment

logit-adj-pytorch PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment This code implements the paper: Long-tail Learning via

Chamuditha Jayanga 53 Dec 23, 2022
Towards uncontrained hand-object reconstruction from RGB videos

Towards uncontrained hand-object reconstruction from RGB videos Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid Project page Paper Table of Co

Yana 69 Dec 27, 2022
FID calculation with proper image resizing and quantization steps

clean-fid: Fixing Inconsistencies in FID Project | Paper The FID calculation involves many steps that can produce inconsistencies in the final metric.

Gaurav Parmar 606 Jan 06, 2023
Code release for SLIP Self-supervision meets Language-Image Pre-training

SLIP: Self-supervision meets Language-Image Pre-training What you can find in this repo: Pre-trained models (with ViT-Small, Base, Large) and code to

Meta Research 621 Dec 31, 2022
Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Nils Thuerey 1.3k Jan 08, 2023
Trajectory Prediction with Graph-based Dual-scale Context Fusion

DSP: Trajectory Prediction with Graph-based Dual-scale Context Fusion Introduction This is the project page of the paper Lu Zhang, Peiliang Li, Jing C

HKUST Aerial Robotics Group 103 Jan 04, 2023
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Håkon Hukkelås 30 Nov 18, 2022
Create animations for the optimization trajectory of neural nets

Animating the Optimization Trajectory of Neural Nets loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscap

Logan Yang 81 Dec 25, 2022
Deep Learning Specialization by Andrew Ng, deeplearning.ai.

Deep Learning Specialization on Coursera Master Deep Learning, and Break into AI This is my personal projects for the course. The course covers deep l

Engen 1.5k Jan 07, 2023
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".

TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende

刘彦超 34 Nov 30, 2022
AttGAN: Facial Attribute Editing by Only Changing What You Want (IEEE TIP 2019)

News 11 Jan 2020: We clean up the code to make it more readable! The old version is here: v1. AttGAN TIP Nov. 2019, arXiv Nov. 2017 TensorFlow impleme

Zhenliang He 568 Dec 14, 2022
PyTorch implementation of MuseMorphose, a Transformer-based model for music style transfer.

MuseMorphose This repository contains the official implementation of the following paper: Shih-Lun Wu, Yi-Hsuan Yang MuseMorphose: Full-Song and Fine-

Yating Music, Taiwan AI Labs 142 Jan 08, 2023
An efficient PyTorch implementation of the evaluation metrics in recommender systems.

recsys_metrics An efficient PyTorch implementation of the evaluation metrics in recommender systems. Overview • Installation • How to use • Benchmark

Xingdong Zuo 12 Dec 02, 2022
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)

InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm

Fan-Yun Sun 232 Dec 28, 2022
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

zhoujun 400 Dec 26, 2022
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

82 Dec 15, 2022