(CVPR 2021) Lifting 2D StyleGAN for 3D-Aware Face Generation

Overview

Lifting 2D StyleGAN for 3D-Aware Face Generation

Official implementation of paper "Lifting 2D StyleGAN for 3D-Aware Face Generation".

Requirements

You can create the conda environment by using conda env create -f environment.yml

Training

Training from pre-trained StyleGAN2

Download our pre-trained StyleGAN and face embedding network from here for training. Unzip them into the pretrained/ folder. Then you can start training by:

python tools/train.py config/ffhq_256.py

Note that you do not need an image dataset here becuase we simply lift the StyleGAN2 using images generated by itself.

Training from custom data

We use a re-cropped version of FFHQ to fit the style of our face embedding network. You can find this dataset here. The cats dataset can be found here. To train a StyleGAN2 from you own dataset, check the content under stylegan2-pytorch folder. After training a StyleGAN2, you can lift it using our training code. Note that our method might not apply to other kind of images, if they are very different from human faces.

Testing

Pre-trained Models:

Google Drive

Sampling random faces

You can generate random samples from a lifted gan by running:

python tools/generate_images.py /path/to/the/checkpoint --output_dir results/

Make sure the checkpoint file and its config.py file are under the same folder.

Generating controlled faces

You can generate GIF animations of rotated faces by running:

python tools/generate_poses.py /path/to/the/checkpoint --output_dir results/ --type yaw

Similarly, you can generate faces with different light directions:

python tools/generate_lighting.py /path/to/the/checkpoint --output_dir results/

Testing FID

We use the code from rosinality's stylegan2-pytorch to compute FID. To compute the FID, you first need to compute the statistics of real images:

python utils/calc_inception.py /path/to/the/dataset/lmdb

You might skip this step if you are using our pre-calculated statistics file (link). Then, to test the FID, you can run:

python tools/test_fid.py /path/to/the/checkpoint --inception /path/to/the/inception/file

Acknowledgment

Part of this code is based on Wu's Unsup3D and Rosinality's StyleGAN2-Pytorch.

Owner
Yichun Shi
Yichun Shi
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Xuan Hieu Duong 7 Jan 12, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023
๐Ÿ”ฎ Execution time predictions for deep neural network training iterations across different GPUs.

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's

Geoffrey Yu 44 Dec 27, 2022
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.

RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).

Fangjian Li 3 Dec 28, 2021
[ECCV 2020] XingGAN for Person Image Generation

Contents XingGAN or CrossingGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowl

Hao Tang 218 Oct 29, 2022
Official DGL implementation of "Rethinking High-order Graph Convolutional Networks"

SE Aggregation This is the implementation for Rethinking High-order Graph Convolutional Networks. Here we show the codes for citation networks as an e

Tianqi Zhang (ๅผ ๅคฉๅฏ) 32 Jul 19, 2022
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
It is modified Tensorflow 2.x version of Mask R-CNN

[TF 2.X] Mask R-CNN for Object Detection and Segmentation [Notice] : The original mask-rcnn uses the tensorflow 1.X version. I modified it for tensorf

Milner 34 Nov 09, 2022
ใ€ŒPyTorch Implementation of AnimeGANv2ใ€ใ‚’็”จใ„ใฆใ€็”Ÿๆˆใ—ใŸ้ก”็”ปๅƒใ‚’ๅ…ƒใฎ็”ปๅƒใซไธŠๆ›ธใใ™ใ‚‹ใƒ‡ใƒข

AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2ใ‚’็”จใ„ใฆใ€็”Ÿๆˆใ—ใŸ้ก”็”ปๅƒใ‚’ๅ…ƒใฎ็”ปๅƒใซไธŠๆ›ธใใ™ใ‚‹ใƒ‡ใƒขใงใ™ใ€‚

KazuhitoTakahashi 21 Oct 18, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022
A Python package for faster, safer, and simpler ML processes

Bender ๐Ÿค– A Python package for faster, safer, and simpler ML processes. Why use bender? Bender will make your machine learning processes, faster, safe

Otovo 6 Dec 13, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
[NeurIPS'20] Multiscale Deep Equilibrium Models

Multiscale Deep Equilibrium Models ๐Ÿ’ฅ ๐Ÿ’ฅ ๐Ÿ’ฅ ๐Ÿ’ฅ This repo is deprecated and we will soon stop actively maintaining it, as a more up-to-date (and simple

CMU Locus Lab 221 Dec 26, 2022