Implementation of: "Exploring Randomly Wired Neural Networks for Image Recognition"

Overview

RandWireNN

PWC

Unofficial PyTorch Implementation of: Exploring Randomly Wired Neural Networks for Image Recognition.

Results

Validation result on Imagenet(ILSVRC2012) dataset:

Top 1 accuracy (%) Paper Here
RandWire-WS(4, 0.75), C=78 74.7 69.2
  • (2019.06.26) 69.2%: 250 epoch with SGD optimizer, lr 0.1, momentum 0.9, weight decay 5e-5, cosine annealing lr schedule (no label smoothing applied, see loss curve below)
  • (2019.04.14) 62.6%: 396k steps with SGD optimizer, lr 0.1, momentum 0.9, weigth decay 5e-5, lr decay about 0.1 at 300k
  • (2019.04.12) 62.6%: 416k steps with Adabound optimizer, initial lr 0.001(decayed about 0.1 at 300k), final lr 0.1, no weight decay
  • (2019.04) JiaminRen's implementation reached accuarcy which is almost close to paper, using identical training strategy with paper.
  • (2019.04.10) 63.0%: 450k steps with Adam optimizer, initial lr 0.001, lr decay about 0.1 for every 150k step
  • (2019.04.07) 56.8%: Training took about 16 hours on AWS p3.2xlarge(NVIDIA V100). 120k steps were done in total, and Adam optimizer with lr=0.001, batch_size=128 was used with no learning rate decay.

Dependencies

This code was tested on Python 3.6 with PyTorch 1.0.1. Other packages can be installed by:

pip install -r requirements.txt

Generate random DAG

cd model/graphs
python er.py -p 0.2 -o er-02.txt # Erdos-Renyi
python ba.py -m 7 -o ba-7.txt # Barbasi-Albert
python ws.py -k 4 -p 0.75 ws-4-075.txt # Watts-Strogatz
# number of nodes: -n option

All outputs from commands shown above will produce txt file like:

(number of nodes)
(number of edges)
(lines, each line representing edges)

Train RandWireNN

  1. Download ImageNet dataset. Train/val folder should contain list of 1,000 directories, each containing list of images for corresponding category. For validation image files, this script can be useful: https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh

  2. Edit config.yaml

    cd config
    cp default.yaml config.yaml
    vim config.yaml # specify data directory, graph txt files
  3. Train

    Note. Validation performed here won't use entire test set, since it will consume much time. (about 3 min.)

    python trainer.py -c [config yaml] -m [name]
    
  4. View tensorboardX

    tensorboard --logdir ./logs
    

Validation

Run full validation:

python validation.py -c [config path] -p [checkpoint path]

This will show accuracy and average test loss of the trained model.

Author

Seungwon Park / @seungwonpark

License

Apache License 2.0

Owner
Seung-won Park
SNU Physics + CSE undergrad., [email protected]
Seung-won Park
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
A containerized REST API around OpenAI's CLIP model.

OpenAI's CLIP — REST API This is a container wrapping OpenAI's CLIP model in a RESTful interface. Running the container locally First, build the conta

Santiago Valdarrama 48 Nov 06, 2022
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data

VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De

6 Dec 15, 2022
Data Engineering ZoomCamp

Data Engineering ZoomCamp I'm partaking in a Data Engineering Bootcamp / Zoomcamp and will be tracking my progress here. I can't promise these notes w

Aaron 61 Jan 06, 2023
Remote sensing change detection using PaddlePaddle

Change Detection Laboratory Developing and benchmarking deep learning-based remo

Lin Manhui 15 Sep 23, 2022
Implementation of the state-of-the-art vision transformers with tensorflow

ViT Tensorflow This repository contains the tensorflow implementation of the state-of-the-art vision transformers (a category of computer vision model

Mohammadmahdi NouriBorji 2 Mar 16, 2022
Python scripts using the Mediapipe models for Halloween.

Mediapipe-Halloween-Examples Python scripts using the Mediapipe models for Halloween. WHY Mainly for fun. But this repository also includes useful exa

Ibai Gorordo 23 Jan 06, 2023
SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

Wentao Zhu 24 May 20, 2022
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Shilong Liu 274 Dec 28, 2022
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022
This repository collects 100 papers related to negative sampling methods.

Negative-Sampling-Paper This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommenda

RUCAIBox 119 Dec 29, 2022
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 36 Oct 31, 2022
Official repository of DeMFI (arXiv.)

DeMFI This is the official repository of DeMFI (Deep Joint Deblurring and Multi-Frame Interpolation). [ArXiv_ver.] Coming Soon. Reference Jihyong Oh a

Jihyong Oh 56 Dec 14, 2022
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

Ryan Spring 114 Nov 04, 2022
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022
BC3407-Group-5-Project - BC3407 Group Project With Python

BC3407-Group-5-Project As the world struggles to contain the ever-changing varia

1 Jan 26, 2022