sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

Overview

sequitur

sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three different autoencoder architectures in PyTorch, and a predefined training loop. sequitur is ideal for working with sequential data ranging from single and multivariate time series to videos, and is geared for those who want to get started quickly with autoencoders.

import torch
from sequitur.models import LINEAR_AE
from sequitur import quick_train

train_seqs = [torch.randn(4) for _ in range(100)] # 100 sequences of length 4
encoder, decoder, _, _ = quick_train(LINEAR_AE, train_seqs, encoding_dim=2, denoise=True)

encoder(torch.randn(4)) # => torch.tensor([0.19, 0.84])

Each autoencoder learns to represent input sequences as lower-dimensional, fixed-size vectors. This can be useful for finding patterns among sequences, clustering sequences, or converting sequences into inputs for other algorithms.

Installation

Requires Python 3.X and PyTorch 1.2.X

You can install sequitur with pip:

$ pip install sequitur

Getting Started

1. Prepare your data

First, you need to prepare a set of example sequences to train an autoencoder on. This training set should be a list of torch.Tensors, where each tensor has shape [num_elements, *num_features]. So, if each example in your training set is a sequence of 10 5x5 matrices, then each example would be a tensor with shape [10, 5, 5].

2. Choose an autoencoder

Next, you need to choose an autoencoder model. If you're working with sequences of numbers (e.g. time series) or 1D vectors (e.g. word vectors), then you should use the LINEAR_AE or LSTM_AE model. For sequences of 2D matrices (e.g. videos) or 3D matrices (e.g. fMRI scans), you'll want to use CONV_LSTM_AE. Each model is a PyTorch module, and can be imported like so:

from sequitur.models import CONV_LSTM_AE

More details about each model are in the "Models" section below.

3. Train the autoencoder

From here, you can either initialize the model yourself and write your own training loop, or import the quick_train function and plug in the model, training set, and desired encoding size, like so:

import torch
from sequitur.models import CONV_LSTM_AE
from sequitur import quick_train

train_set = [torch.randn(10, 5, 5) for _ in range(100)]
encoder, decoder, _, _ = quick_train(CONV_LSTM_AE, train_set, encoding_dim=4)

After training, quick_train returns the encoder and decoder models, which are PyTorch modules that can encode and decode new sequences. These can be used like so:

x = torch.randn(10, 5, 5)
z = encoder(x) # Tensor with shape [4]
x_prime = decoder(z) # Tensor with shape [10, 5, 5]

API

Training your Model

quick_train(model, train_set, encoding_dim, verbose=False, lr=1e-3, epochs=50, denoise=False, **kwargs)

Lets you train an autoencoder with just one line of code. Useful if you don't want to create your own training loop. Training involves learning a vector encoding of each input sequence, reconstructing the original sequence from the encoding, and calculating the loss (mean-squared error) between the reconstructed input and the original input. The autoencoder weights are updated using the Adam optimizer.

Parameters:

  • model (torch.nn.Module): Autoencoder model to train (imported from sequitur.models)
  • train_set (list): List of sequences (each a torch.Tensor) to train the model on; has shape [num_examples, seq_len, *num_features]
  • encoding_dim (int): Desired size of the vector encoding
  • verbose (bool, optional (default=False)): Whether or not to print the loss at each epoch
  • lr (float, optional (default=1e-3)): Learning rate
  • epochs (int, optional (default=50)): Number of epochs to train for
  • **kwargs: Parameters to pass into model when it's instantiated

Returns:

  • encoder (torch.nn.Module): Trained encoder model; takes a sequence (as a tensor) as input and returns an encoding of the sequence as a tensor of shape [encoding_dim]
  • decoder (torch.nn.Module): Trained decoder model; takes an encoding (as a tensor) and returns a decoded sequence
  • encodings (list): List of tensors corresponding to the final vector encodings of each sequence in the training set
  • losses (list): List of average MSE values at each epoch

Models

Every autoencoder inherits from torch.nn.Module and has an encoder attribute and a decoder attribute, both of which also inherit from torch.nn.Module.

Sequences of Numbers

LINEAR_AE(input_dim, encoding_dim, h_dims=[], h_activ=torch.nn.Sigmoid(), out_activ=torch.nn.Tanh())

Consists of fully-connected layers stacked on top of each other. Can only be used if you're dealing with sequences of numbers, not vectors or matrices.

Parameters:

  • input_dim (int): Size of each input sequence
  • encoding_dim (int): Size of the vector encoding
  • h_dims (list, optional (default=[])): List of hidden layer sizes for the encoder
  • h_activ (torch.nn.Module or None, optional (default=torch.nn.Sigmoid())): Activation function to use for hidden layers; if None, no activation function is used
  • out_activ (torch.nn.Module or None, optional (default=torch.nn.Tanh())): Activation function to use for the output layer in the encoder; if None, no activation function is used

Example:

To create the autoencoder shown in the diagram above, use the following arguments:

from sequitur.models import LINEAR_AE

model = LINEAR_AE(
  input_dim=10,
  encoding_dim=4,
  h_dims=[8, 6],
  h_activ=None,
  out_activ=None
)

x = torch.randn(10) # Sequence of 10 numbers
z = model.encoder(x) # z.shape = [4]
x_prime = model.decoder(z) # x_prime.shape = [10]

Sequences of 1D Vectors

LSTM_AE(input_dim, encoding_dim, h_dims=[], h_activ=torch.nn.Sigmoid(), out_activ=torch.nn.Tanh())

Autoencoder for sequences of vectors which consists of stacked LSTMs. Can be trained on sequences of varying length.

Parameters:

  • input_dim (int): Size of each sequence element (vector)
  • encoding_dim (int): Size of the vector encoding
  • h_dims (list, optional (default=[])): List of hidden layer sizes for the encoder
  • h_activ (torch.nn.Module or None, optional (default=torch.nn.Sigmoid())): Activation function to use for hidden layers; if None, no activation function is used
  • out_activ (torch.nn.Module or None, optional (default=torch.nn.Tanh())): Activation function to use for the output layer in the encoder; if None, no activation function is used

Example:

To create the autoencoder shown in the diagram above, use the following arguments:

from sequitur.models import LSTM_AE

model = LSTM_AE(
  input_dim=3,
  encoding_dim=7,
  h_dims=[64],
  h_activ=None,
  out_activ=None
)

x = torch.randn(10, 3) # Sequence of 10 3D vectors
z = model.encoder(x) # z.shape = [7]
x_prime = model.decoder(z, seq_len=10) # x_prime.shape = [10, 3]

Sequences of 2D/3D Matrices

CONV_LSTM_AE(input_dims, encoding_dim, kernel, stride=1, h_conv_channels=[1], h_lstm_channels=[])

Autoencoder for sequences of 2D or 3D matrices/images, loosely based on the CNN-LSTM architecture described in Beyond Short Snippets: Deep Networks for Video Classification. Uses a CNN to create vector encodings of each image in an input sequence, and then an LSTM to create encodings of the sequence of vectors.

Parameters:

  • input_dims (tuple): Shape of each 2D or 3D image in the input sequences
  • encoding_dim (int): Size of the vector encoding
  • kernel (int or tuple): Size of the convolving kernel; use tuple to specify a different size for each dimension
  • stride (int or tuple, optional (default=1)): Stride of the convolution; use tuple to specify a different stride for each dimension
  • h_conv_channels (list, optional (default=[1])): List of hidden channel sizes for the convolutional layers
  • h_lstm_channels (list, optional (default=[])): List of hidden channel sizes for the LSTM layers

Example:

from sequitur.models import CONV_LSTM_AE

model = CONV_LSTM_AE(
  input_dims=(50, 100),
  encoding_dim=16,
  kernel=(5, 8),
  stride=(3, 5),
  h_conv_channels=[4, 8],
  h_lstm_channels=[32, 64]
)

x = torch.randn(22, 50, 100) # Sequence of 22 50x100 images
z = model.encoder(x) # z.shape = [16]
x_prime = model.decoder(z, seq_len=22) # x_prime.shape = [22, 50, 100]
Owner
Jonathan Shobrook
Jonathan Shobrook
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

SMPLify-XMC This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright Lic

Lea Müller 83 Dec 14, 2022
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
masscan + nmap + Finger

说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/

Ryan 3 Mar 25, 2022
The official implementation of the Hybrid Self-Attention NEAT algorithm

PUREPLES - Pure Python Library for ES-HyperNEAT About This is a library of evolutionary algorithms with a focus on neuroevolution, implemented in pure

Adrian Westh 91 Dec 12, 2022
Dist2Dec: A Simplicial Neural Network for Homology Localization

Dist2Dec: A Simplicial Neural Network for Homology Localization

Alexandros Keros 6 Jun 12, 2022
Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them

TensorFlow Serving + Streamlit! ✨ 🖼️ Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them! This is a pretty simple S

Álvaro Bartolomé 18 Jan 07, 2023
Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Datasets"

Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Data

2 Oct 06, 2022
AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis.

AITom Introduction AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis. AITom is originated from the tomominer l

93 Jan 02, 2023
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

Yasunori Shimura 7 Oct 31, 2022
A PyTorch-based Semi-Supervised Learning (SSL) Codebase for Pixel-wise (Pixel) Vision Tasks

PixelSSL is a PyTorch-based semi-supervised learning (SSL) codebase for pixel-wise (Pixel) vision tasks. The purpose of this project is to promote the

Zhanghan Ke 255 Dec 11, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
A Haskell kernel for IPython.

IHaskell You can now try IHaskell directly in your browser at CoCalc or mybinder.org. Alternatively, watch a talk and demo showing off IHaskell featur

Andrew Gibiansky 2.4k Dec 29, 2022
Determined: Deep Learning Training Platform

Determined: Deep Learning Training Platform Determined is an open-source deep learning training platform that makes building models fast and easy. Det

Determined AI 2k Dec 31, 2022
Sandbox for training deep learning networks

Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (

Oleg Sémery 2.7k Jan 01, 2023
Memory Efficient Attention (O(sqrt(n)) for Jax and PyTorch

Memory Efficient Attention This is unofficial implementation of Self-attention Does Not Need O(n^2) Memory for Jax and PyTorch. Implementation is almo

Amin Rezaei 126 Dec 27, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
Deep Learning to Create StepMania SM FIles

StepCOVNet Running Audio to SM File Generator Currently only produces .txt files. Use SMDataTools to convert .txt to .sm python stepmania_note_generat

Chimezie Iwuanyanwu 8 Jan 08, 2023
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
Process text, including tokenizing and representing sentences as vectors and Applying some concepts like RNN, LSTM and GRU to create a classifier can detect the language in which a sentence is written from among 17 languages.

Language Identifier What is this ? The goal of this project is to create a model that is able to predict a given sentence language through text proces

Hossam Asaad 9 Dec 15, 2022