The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Overview

Energy-based Conditional Generative Adversarial Network (ECGAN)

This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers". The repository is modified from StudioGAN. If you find our work useful, please consider citing the following paper:

@inproceedings{chen2021ECGAN,
  title   = {A Unified View of cGANs with and without Classifiers},
  author  = {Si-An Chen and Chun-Liang Li and Hsuan-Tien Lin},
  booktitle = {Advances in Neural Information Processing Systems},
  year    = {2021}
}

Please feel free to contact Si-An Chen if you have any questions about the code/paper.

Introduction

We propose a new Conditional Generative Adversarial Network (cGAN) framework called Energy-based Conditional Generative Adversarial Network (ECGAN) which provides a unified view of cGANs and achieves state-of-the-art results. We use the decomposition of the joint probability distribution to connect the goals of cGANs and classification as a unified framework. The framework, along with a classic energy model to parameterize distributions, justifies the use of classifiers for cGANs in a principled manner. It explains several popular cGAN variants, such as ACGAN, ProjGAN, and ContraGAN, as special cases with different levels of approximations. An illustration of the framework is shown below.

Requirements

  • Anaconda
  • Python >= 3.6
  • 6.0.0 <= Pillow <= 7.0.0
  • scipy == 1.1.0 (Recommended for fast loading of Inception Network)
  • sklearn
  • seaborn
  • h5py
  • tqdm
  • torch >= 1.6.0 (Recommended for mixed precision training and knn analysis)
  • torchvision >= 0.7.0
  • tensorboard
  • 5.4.0 <= gcc <= 7.4.0 (Recommended for proper use of adaptive discriminator augmentation module)

You can install the recommended environment as follows:

conda env create -f environment.yml -n studiogan

With docker, you can use:

docker pull mgkang/studiogan:0.1

Quick Start

  • Train (-t) and evaluate (-e) the model defined in CONFIG_PATH using GPU 0
CUDA_VISIBLE_DEVICES=0 python3 src/main.py -t -e -c CONFIG_PATH
  • Train (-t) and evaluate (-e) the model defined in CONFIG_PATH using GPUs (0, 1, 2, 3) and DataParallel
CUDA_VISIBLE_DEVICES=0,1,2,3 python3 src/main.py -t -e -c CONFIG_PATH

Try python3 src/main.py to see available options.

Dataset

  • CIFAR10: StudioGAN will automatically download the dataset once you execute main.py.

  • Tiny Imagenet, Imagenet, or a custom dataset:

    1. download Tiny Imagenet and Imagenet. Prepare your own dataset.
    2. make the folder structure of the dataset as follows:
┌── docs
├── src
└── data
    └── ILSVRC2012 or TINY_ILSVRC2012 or CUSTOM
        ├── train
        │   ├── cls0
        │   │   ├── train0.png
        │   │   ├── train1.png
        │   │   └── ...
        │   ├── cls1
        │   └── ...
        └── valid
            ├── cls0
            │   ├── valid0.png
            │   ├── valid1.png
            │   └── ...
            ├── cls1
            └── ...

Examples and Results

The src/configs directory contains config files used in our experiments.

CIFAR10 (3x32x32)

To train and evaluate ECGAN-UC on CIFAR10:

python3 src/main.py -t -e -c src/configs/CIFAR10/ecgan_v2_none_0_0p01.json
Method Reference IS(⭡) FID(⭣) F_1/8(⭡) F_8(⭡) Cfg Log Weights
BigGAN-Mod StudioGAN 9.746 8.034 0.995 0.994 - - -
ContraGAN StudioGAN 9.729 8.065 0.993 0.992 - - -
Ours - 10.078 7.936 0.990 0.988 Cfg Log Link

Tiny ImageNet (3x64x64)

To train and evaluate ECGAN-UC on Tiny ImageNet:

python3 src/main.py -t -e -c src/configs/TINY_ILSVRC2012/ecgan_v2_none_0_0p01.json --eval_type valid
Method Reference IS(⭡) FID(⭣) F_1/8(⭡) F_8(⭡) Cfg Log Weights
BigGAN-Mod StudioGAN 11.998 31.92 0.956 0.879 - - -
ContraGAN StudioGAN 13.494 27.027 0.975 0.902 - - -
Ours - 18.445 18.319 0.977 0.973 Cfg Log Link

ImageNet (3x128x128)

To train and evaluate ECGAN-UCE on ImageNet (~12 days on 8 NVIDIA V100 GPUs):

python3 src/main.py -t -e -l -sync_bn -c src/configs/ILSVRC2012/imagenet_ecgan_v2_contra_1_0p05.json --eval_type valid
Method Reference IS(⭡) FID(⭣) F_1/8(⭡) F_8(⭡) Cfg Log Weights
BigGAN StudioGAN 28.633 24.684 0.941 0.921 - - -
ContraGAN StudioGAN 25.249 25.161 0.947 0.855 - - -
Ours - 80.685 8.491 0.984 0.985 Cfg Log Link

Generated Images

Here are some selected images generated by ECGAN.

Owner
sianchen
Ph.D. student in Computer Science at National Taiwan University
sianchen
OpenMMLab Image and Video Editing Toolbox

Introduction MMEditing is an open source image and video editing toolbox based on PyTorch. It is a part of the OpenMMLab project. The master branch wo

OpenMMLab 3.9k Jan 04, 2023
Erpnext app for make employee salary on payroll entry based on one or more project with percentage for all project equal 100 %

Project Payroll this app for make payroll for employee based on projects like project on 30 % and project 2 70 % as account dimension it makes genral

Ibrahim Morghim 8 Jan 02, 2023
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023
PaRT: Parallel Learning for Robust and Transparent AI

PaRT: Parallel Learning for Robust and Transparent AI This repository contains the code for PaRT, an algorithm for training a base network on multiple

Mahsa 0 May 02, 2022
Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Kim Seonghyeon 2.2k Jan 01, 2023
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation

Quan Meng 191 Dec 26, 2022
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022
Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation

Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation This implementation is based on orobix implement

Juntang Zhuang 116 Sep 06, 2022
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Jhacson Meza 47 Nov 18, 2022
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023
Hierarchical Few-Shot Generative Models

Hierarchical Few-Shot Generative Models Giorgio Giannone, Ole Winther This repo contains code and experiments for the paper Hierarchical Few-Shot Gene

Giorgio Giannone 6 Dec 12, 2022
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
Addon and nodes for working with structural biology and molecular data in Blender.

Molecular Nodes 🧬 🔬 💻 Buy Me a Coffee to Keep Development Going! Join a Community of Blender SciVis People! What is Molecular Nodes? Molecular Node

Brady Johnston 456 Jan 08, 2023
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
The Wearables Development Toolkit - a development environment for activity recognition applications with sensor signals

Wearables Development Toolkit (WDK) The Wearables Development Toolkit (WDK) is a framework and set of tools to facilitate the iterative development of

Juan Haladjian 114 Nov 27, 2022
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022
[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

129 Jan 04, 2023
Code and data for "Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning" (EMNLP 2021).

GD-VCR Code for Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning (EMNLP 2021). Research Questions and Aims: How well can a model perform o

Da Yin 24 Oct 13, 2022