Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution

Overview

Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution

Abstract

Within the Latin (and ancient Greek) production, it is well known that peculiar metric schemes were followed not only in poetic compositions, but also in many prose works. Such metric patterns were based on syllabic quantity, i.e., on on the length of the involved syllables (which can be long or short), and there is much evidence suggesting that certain authors held a preference for certain rhythmic schemes over others.
In this project, we investigate the possibility to employ syllabic quantity as a base to derive rhythmic features for the task of computational Authorship Attribution of Latin prose texts. We test the impact of these features on the attribution task when combined with other topic-agnostic features, employing three datasets and two different learning algorithms.

Syllabic Quantity for Authorship Attribution

Authorship Attribution (AA) is a subtask of the field of Authorship Analysis, which aims to infer various characteristics of the writer of a document, its identity included. In particular, given a set of candidate authors A1... Am and a document d, the goal of AA is to find the most probable author for the document d among the set of candidates; AA is thus a single-label multi-class classification problem, where the classes are the authors in the set.
In this project, we investigate the possibility to employ features extracted from the quantity of the syllables in a document as discriminative features for AA on Latin prose texts. Syllables are sound units a single word can be divided into; in particular, a syllable can be thought as an oscillation of sound in the word pronunciation, and is characterized by its quantity (long or short), which is the amount of time required to pronounce it. It is well known that classical Latin (and Greek) poetry followed metric patterns based on sequences of short and long syllables. In particular, syllables were combined in what is called a "foot", and in turn a series of "feet" composed the metre of a verse. Yet, similar metric schemes were followed also in many prose compositions, in order to give a certain cadence to the discourse and focus the attention on specific parts. In particular, the end of sentences and periods was deemed as especially important in this sense, and known as clausola. During the Middle Ages, Latin prosody underwent a gradual but profound change. The concept of syllabic quantity lost its relevance as a language discriminator, in favour of the accent, or stress. However, Latin accentuation rules are largely dependent on syllabic quantity, and medieval writers retained the classical importance of the clausola, which became based on stresses and known as cursus. An author's practice of certain rhythmic patterns might thus play an important role in the identification of that author's style.

Datasets

In this project, we employ 3 different datasets:

  • LatinitasAntiqua. The texts can be automatically downloaded with the script in the corresponding code file (src/dataset_prep/LatinitasAntiqua_prep.py). They come from the Corpus Corporum repository, developed by the University of Zurich, and in particular its sub-section called Latinitas antiqua, which contains various Latin works from the Perseus Digital library; in total, the corpus is composed of 25 Latin authors and 90 prose texts, spanning through the Classical, Imperial and Early-Medieval periods, and a variety of genres (mostly epistolary, historical and rhetoric).
  • KabalaCorpusA. The texts can be downloaded from the followig [link](https://www.jakubkabala.com/gallus-monk/). In particular, we use Corpus A, which consists of 39 texts by 22 authors from the 11-12th century.
  • MedLatin. The texts can be downloaded from the following link: . Originally, the texts were divided into two datasets, but we combine them together. Note that we exclude the texts from the collection of Petrus de Boateriis, since it is a miscellanea of authors. We delete the quotations from other authors and the insertions in languages other than Latin, marked in the texts.
The documents are automatically pre-processed in order to clean them from external information and noise. In particular, headings, editors' notes and other meta-information are deleted where present. Symbols (such as asterisks or parentheses) and Arabic numbers are deleted as well. Punctuation marks are normalized: every occurrence of question and exclamation points, semicolons, colons and suspension points are exchanged with a single point, while commas are deleted. The text is finally lower-cased and normalized: the character v is exchanged with the character u and the character j with the character i, and every stressed vowels is exchanged with the corresponding non-stressed vowel. As a final step, each text is divided into sentences, where a sentence is made of at least 5 distinct words (shorter sentences are attached to the next sentence in the sequence, or the previous one in case it is the last one in the document). This allows to create the fragments that ultimately form the training, validation and and test sets for the algorithms. In particular, each fragment is made of 10 consecutive, non-overlapping sentences.

Experiments

In order to transform the Latin texts into the corresponding syllabic quantity (SQ) encoding, we employ the prosody library available on the [Classical Language ToolKit](http://cltk.org/).
We also experiment with the four Distortion Views presented by [Stamatatos](https://asistdl.onlinelibrary.wiley.com/doi/full/10.1002/asi.23968?casa_token=oK9_O2SOpa8AAAAA%3ArLsIRzk4IhphR7czaG6BZwLmhh9mk4okCj--kXOJolp1T70XzOXwOw-4vAOP8aLKh-iOTar1mq8nN3B7), which, given a list Fw of function words, are:

  • Distorted View – Multiple Asterisks (DVMA): every word not included in Fw is masked by replacing each of its characters with an asterisk.
  • Distorted View – Single Asterisk (DVSA): every word not included in Fw is masked by replacing it with a single asterisk.
  • Distorted View – Exterior Characters (DVEX): every word not included in Fw is masked by replacing each of its characters with an asterisk, except the first and last one.
  • Distorted View – Last 2 (DVL2): every word not included in Fw is masked by replacing each of its characters with an asterisk, except the last two characters.
BaseFeatures (BFs) and it's made of: function words, word lengths, sentence lengths.
We experiment with two different learning methods: Support Vector Machine and Neural Network. All the experiments are conducted on the same train-validation-test split.
For the former, we compute the TfIdf of the character n-grams in various ranges, extracted from the various encodings of the text, which we concatenate to BaseFeatures, and feed the resulting features matrix to a LinearSVC implemented in the [scikit-learn package](https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html).
For the latter, we compute various parallel, identical branches, each one processing a single encoding or the Bfs matrix, finally combining the different outputs into a single decision layer. The network is implimented with the [PyTorch package](https://pytorch.org/). Each branch outputs a matrix of probabilities, which are stacked together, and an average-pooling operation is applied in order to obtain the average value of the decisions of the different branches. The final decision is obtained through a final dense layer applying a softmax (for training) or argmax (for testing) operation over the classes probabilities. The training of the network is conducted with the traditional backpropagation method; we employ cross-entropy as the loss function and the Adam optimizer.
We employ the macro-F1 and micro-F1 as measures in order to assess the performance of the methods. For each method employing SQ-based features, we compute the statistical significance against its baseline (the same method without SQ-based features); to this aim, we employ the McNemar's paired non-parametric statistical hypothesis test, taking $0.05$ as significance value.

NN architecture

Code

The code is organized as follows int the src directory:

  • NN_models: the directory contains the code to build the Neural Networks tried in the project, one file for each architecture. The one finally used in the project is in the file NN_cnn_deep_ensemble.py.
  • dataset_prep: the directory contains the code to preprocess the various dataset employed in the project. The file NN_dataloader.py prepares the data to be processed for the Neural Network.
  • general: the directory contains: a) helpers.py, with various functions useful for the current project; b) significance.py, with the code for the significance test; c) utils.py, with more comme useful functions; d) visualization.py, with functions for drawing graphics and similar.
  • NN_classification.py: it performs the Neural Networks experiments.
  • SVM_classification.py: it performs the Support Vector Machine experiments.
  • feature_extractor.py: it extract the features for the SVM experiments.
  • main.py

Manifold-Mixup implementation for fastai V2

Manifold Mixup Unofficial implementation of ManifoldMixup (Proceedings of ICML 19) for fast.ai (V2) based on Shivam Saboo's pytorch implementation of

Nestor Demeure 16 Jul 25, 2022
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

Libraries, tools and tasks created and used at DeepMind Robotics.

DeepMind 270 Nov 30, 2022
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
Level Based Customer Segmentation

level_based_customer_segmentation Level Based Customer Segmentation Persona Veri Seti kullanılarak müşteri segmentasyonu yapılmıştır. KOLONLAR : PRICE

Buse Yıldırım 6 Dec 21, 2021
chen2020iros: Learning an Overlap-based Observation Model for 3D LiDAR Localization.

Overlap-based 3D LiDAR Monte Carlo Localization This repo contains the code for our IROS2020 paper: Learning an Overlap-based Observation Model for 3D

Photogrammetry & Robotics Bonn 219 Dec 15, 2022
Crossover Learning for Fast Online Video Instance Segmentation (ICCV 2021)

TL;DR: CrossVIS (Crossover Learning for Fast Online Video Instance Segmentation) proposes a novel crossover learning paradigm to fully leverage rich c

Hust Visual Learning Team 79 Nov 25, 2022
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
Language models are open knowledge graphs ( non official implementation )

language-models-are-knowledge-graphs-pytorch Language models are open knowledge graphs ( work in progress ) A non official reimplementation of Languag

theblackcat102 132 Dec 18, 2022
Training vision models with full-batch gradient descent and regularization

Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin

Jonas Geiping 32 Jan 06, 2023
A production-ready, scalable Indexer for the Jina neural search framework, based on HNSW and PSQL

🌟 HNSW + PostgreSQL Indexer HNSWPostgreSQLIndexer Jina is a production-ready, scalable Indexer for the Jina neural search framework. It combines the

Jina AI 25 Oct 14, 2022
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

66 Dec 16, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
An automated algorithm to extract the linear blend skinning (LBS) from a set of example poses

Dem Bones This repository contains an implementation of Smooth Skinning Decomposition with Rigid Bones, an automated algorithm to extract the Linear B

Electronic Arts 684 Dec 26, 2022
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)

InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm

Fan-Yun Sun 232 Dec 28, 2022
Motion and Shape Capture from Sparse Markers

MoSh++ This repository contains the official chumpy implementation of mocap body solver used for AMASS: AMASS: Archive of Motion Capture as Surface Sh

Nima Ghorbani 135 Dec 23, 2022
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

137 Dec 15, 2022