Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models.

Overview

Feature Engine

PythonVersion PyPI version License https://github.com/feature-engine/feature_engine/blob/master/LICENSE.md CircleCI https://app.circleci.com/pipelines/github/feature-engine/feature_engine?branch=master Documentation Status https://feature-engine.readthedocs.io/en/latest/index.html Join the chat at https://gitter.im/feature_engine/community Sponsorship https://www.trainindata.com/ Downloads Downloads Conda https://anaconda.org/conda-forge/feature_engine

Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models. Feature-engine's transformers follow scikit-learn's functionality with fit() and transform() methods to first learn the transforming parameters from data and then transform the data.

Feature-engine features in the following resources:

Blogs about Feature-engine:

Documentation

En Español:

More resources will be added as they appear online!

Current Feature-engine's transformers include functionality for:

  • Missing Data Imputation
  • Categorical Variable Encoding
  • Outlier Capping or Removal
  • Discretisation
  • Numerical Variable Transformation
  • Variable Creation
  • Variable Selection
  • Scikit-learn Wrappers

Imputing Methods

  • MeanMedianImputer
  • RandomSampleImputer
  • EndTailImputer
  • AddMissingIndicator
  • CategoricalImputer
  • ArbitraryNumberImputer
  • DropMissingData

Encoding Methods

  • OneHotEncoder
  • OrdinalEncoder
  • CountFrequencyEncoder
  • MeanEncoder
  • WoEEncoder
  • PRatioEncoder
  • RareLabelEncoder
  • DecisionTreeEncoder

Outlier Handling methods

  • Winsorizer
  • ArbitraryOutlierCapper
  • OutlierTrimmer

Discretisation methods

  • EqualFrequencyDiscretiser
  • EqualWidthDiscretiser
  • DecisionTreeDiscretiser
  • ArbitraryDiscreriser

Variable Transformation methods

  • LogTransformer
  • LogCpTransformer
  • ReciprocalTransformer
  • PowerTransformer
  • BoxCoxTransformer
  • YeoJohnsonTransformer

Scikit-learn Wrapper:

  • SklearnTransformerWrapper

Variable Creation:

  • MathematicalCombination
  • CombineWithReferenceFeature
  • CyclicalTransformer

Feature Selection:

  • DropFeatures
  • DropConstantFeatures
  • DropDuplicateFeatures
  • DropCorrelatedFeatures
  • SmartCorrelationSelection
  • ShuffleFeaturesSelector
  • SelectBySingleFeaturePerformance
  • SelectByTargetMeanPerformance
  • RecursiveFeatureElimination
  • RecursiveFeatureAddition

Installing

From PyPI using pip:

pip install feature_engine

From Anaconda:

conda install -c conda-forge feature_engine

Or simply clone it:

git clone https://github.com/feature-engine/feature_engine.git

Usage

>>> import pandas as pd
>>> from feature_engine.encoding import RareLabelEncoder

>>> data = {'var_A': ['A'] * 10 + ['B'] * 10 + ['C'] * 2 + ['D'] * 1}
>>> data = pd.DataFrame(data)
>>> data['var_A'].value_counts()
Out[1]:
A    10
B    10
C     2
D     1
Name: var_A, dtype: int64
>>> rare_encoder = RareLabelEncoder(tol=0.10, n_categories=3)
>>> data_encoded = rare_encoder.fit_transform(data)
>>> data_encoded['var_A'].value_counts()
Out[2]:
A       10
B       10
Rare     3
Name: var_A, dtype: int64

See more usage examples in the Jupyter Notebooks in the example folder of this repository, or in the documentation.

Contributing

Details about how to contribute can be found in the Contributing Page

In short:

Local Setup Steps

  • Fork the repo
  • Clone your fork into your local computer: git clone https://github.com/ /feature_engine.git
  • cd into the repo cd feature_engine
  • Install as a developer: pip install -e .
  • Create and activate a virtual environment with any tool of choice
  • Install the dependencies as explained in the Contributing Page
  • Create a feature branch with a meaningful name for your feature: git checkout -b myfeaturebranch
  • Develop your feature, tests and documentation
  • Make sure the tests pass
  • Make a PR

Thank you!!

Opening Pull Requests

PR's are welcome! Please make sure the CI tests pass on your branch.

Tests

We prefer tox. In your environment:

  • Run pip install tox
  • cd into the root directory of the repo: cd feature_engine
  • Run tox

If the tests pass, the code is functional.

You can also run the tests in your environment (without tox). For guidelines on how to do so, check the Contributing Page.

Documentation

Feature-engine documentation is built using Sphinx and is hosted on Read the Docs.

To build the documentation make sure you have the dependencies installed. From the root directory: pip install -r docs/requirements.txt.

Now you can build the docs: sphinx-build -b html docs build

License

BSD 3-Clause

References

Many of the engineering and encoding functionalities are inspired by this series of articles from the 2009 KDD Competition.

Owner
Soledad Galli
Data scientist, open-source developer, book author and machine learning instructor. Creator and maintainer of Feature-engine.
Soledad Galli
Hypernets: A General Automated Machine Learning framework to simplify the development of End-to-end AutoML toolkits in specific domains.

A General Automated Machine Learning framework to simplify the development of End-to-end AutoML toolkits in specific domains.

DataCanvas 216 Dec 23, 2022
Python/Sage Tool for deriving Scattering Matrices for WDF R-Adaptors

R-Solver A Python tools for deriving R-Type adaptors for Wave Digital Filters. This code is not quite production-ready. If you are interested in contr

8 Sep 19, 2022
Covid-polygraph - a set of Machine Learning-driven fact-checking tools

Covid-polygraph, a set of Machine Learning-driven fact-checking tools that aim to address the issue of misleading information related to COVID-19.

1 Apr 22, 2022
TIANCHI Purchase Redemption Forecast Challenge

TIANCHI Purchase Redemption Forecast Challenge

Haorui HE 4 Aug 26, 2022
easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

Neuron AI 5 Jun 18, 2022
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Anik Patel 4 Dec 05, 2021
A Pythonic framework for threat modeling

pytm: A Pythonic framework for threat modeling Introduction Traditional threat modeling too often comes late to the party, or sometimes not at all. In

Izar Tarandach 644 Dec 20, 2022
UpliftML: A Python Package for Scalable Uplift Modeling

UpliftML is a Python package for scalable unconstrained and constrained uplift modeling from experimental data. To accommodate working with big data, the package uses PySpark and H2O models as base l

Booking.com 254 Dec 31, 2022
Flask app to predict daily radiation from the time series of Solcast from Islamabad, Pakistan

Solar-radiation-ISB-MLOps - Flask app to predict daily radiation from the time series of Solcast from Islamabad, Pakistan.

Abid Ali Awan 1 Dec 31, 2021
A project based example of Data pipelines, ML workflow management, API endpoints and Monitoring.

MLOps template with examples for Data pipelines, ML workflow management, API development and Monitoring.

Utsav 33 Dec 03, 2022
Firebase + Cloudrun + Machine learning

A simple end to end consumer lending decision engine powered by Google Cloud Platform (firebase hosting and cloudrun)

Emmanuel Ogunwede 8 Aug 16, 2022
jaxfg - Factor graph-based nonlinear optimization library for JAX.

Factor graphs + nonlinear optimization in JAX

Brent Yi 134 Dec 21, 2022
Falken provides developers with a service that allows them to train AI that can play their games

Falken provides developers with a service that allows them to train AI that can play their games. Unlike traditional RL frameworks that learn through rewards or batches of offline training, Falken is

Google Research 223 Jan 03, 2023
Pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code

pandas-method-chaining pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code. It is a fork from pandas-v

Francis 5 May 14, 2022
Deep Survival Machines - Fully Parametric Survival Regression

Package: dsm Python package dsm provides an API to train the Deep Survival Machines and associated models for problems in survival analysis. The under

Carnegie Mellon University Auton Lab 10 Dec 30, 2022
Implementation of linesearch Optimization Algorithms in Python

Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti

Paul 3 Dec 06, 2022
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 648 Dec 16, 2022
Predicting diabetes over a five year period using logistic regression and the Pima First-Nation dataset

Diabetes This script uses the Pima First Nations dataset to create a model to predict whether or not an individual will develop Diabetes Mellitus Type

1 Mar 28, 2022
Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas.

Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas. Its objective is to ex

Taylor G Smith 54 Aug 20, 2022
Exemplary lightweight and ready-to-deploy machine learning project

Exemplary lightweight and ready-to-deploy machine learning project

snapADDY GmbH 6 Dec 20, 2022