Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Overview

RingNet

alt text

This is an official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision. The project was formerly referred by RingNet. The codebase consists of the inference code, i.e. give an face image using this code one can generate a 3D mesh of a complete head with the face region. For further details on the method please refer to the following publication,

Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision
Soubhik Sanyal, Timo Bolkart, Haiwen Feng, Michael J. Black
CVPR 2019

More details on our NoW benchmark dataset, 3D face reconstruction challenge can be found in our project page. A pdf preprint is also available on the project page.

  • Update: We have released the evaluation code for NoW Benchmark challenge here.

  • Update: Add demo to build a texture for the reconstructed mesh from the input image.

  • Update: NoW Dataset is divided into Test set and Validation Set. Ground Truth scans are available for the Validation Set. Please Check our project page for more details.

  • Update: We have released a PyTorch implementation of the decoder FLAME with dynamic conture loading which can be directly used for training networks. Please check FLAME_PyTorch for the code.

Installation

The code uses Python 2.7 and it is tested on Tensorflow gpu version 1.12.0, with CUDA-9.0 and cuDNN-7.3.

Setup RingNet Virtual Environment

virtualenv --no-site-packages 
   
    /.virtualenvs/RingNet
source 
    
     /.virtualenvs/RingNet/bin/activate
pip install --upgrade pip==19.1.1

    
   

Clone the project and install requirements

git clone https://github.com/soubhiksanyal/RingNet.git
cd RingNet
pip install -r requirements.txt
pip install opendr==0.77
mkdir model

Install mesh processing libraries from MPI-IS/mesh. (This now only works with python 3, so donot install it)

  • Update: Please install the following fork for working with the mesh processing libraries with python 2.7

Download models

  • Download pretrained RingNet weights from the project website, downloads page. Copy this inside the model folder
  • Download FLAME 2019 model from here. Copy it inside the flame_model folder. This step is optional and only required if you want to use the output Flame parameters to play with the 3D mesh, i.e., to neutralize the pose and expression and only using the shape as a template for other methods like VOCA (Voice Operated Character Animation).
  • Download the FLAME_texture_data and unpack this into the flame_model folder.

Demo

RingNet requires a loose crop of the face in the image. We provide two sample images in the input_images folder which are taken from CelebA Dataset.

Output predicted mesh rendering

Run the following command from the terminal to check the predictions of RingNet

python -m demo --img_path ./input_images/000001.jpg --out_folder ./RingNet_output

Provide the image path and it will output the predictions in ./RingNet_output/images/.

Output predicted mesh

If you want the output mesh then run the following command

python -m demo --img_path ./input_images/000001.jpg --out_folder ./RingNet_output --save_obj_file=True

It will save a *.obj file of the predicted mesh in ./RingNet_output/mesh/.

Output textured mesh

If you want the output the predicted mesh with the image projected onto the mesh as texture then run the following command

python -m demo --img_path ./input_images/000001.jpg --out_folder ./RingNet_output --save_texture=True

It will save a *.obj, *.mtl, and *.png file of the predicted mesh in ./RingNet_output/texture/.

Output FLAME and camera parameters

If you want the predicted FLAME and camera parameters then run the following command

python -m demo --img_path ./input_images/000001.jpg --out_folder ./RingNet_output --save_obj_file=True --save_flame_parameters=True

It will save a *.npy file of the predicted flame and camera parameters and in ./RingNet_output/params/.

Generate VOCA templates

If you want to play with the 3D mesh, i.e. neutralize pose and expression of the 3D mesh to use it as a template in VOCA (Voice Operated Character Animation), run the following command

python -m demo --img_path ./input_images/000013.jpg --out_folder ./RingNet_output --save_obj_file=True --save_flame_parameters=True --neutralize_expression=True

License

Free for non-commercial and scientific research purposes. By using this code, you acknowledge that you have read the license terms (https://ringnet.is.tue.mpg.de/license.html), understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not use the code. For commercial use please check the website (https://ringnet.is.tue.mpg.de/license.html).

Referencing RingNet

Please cite the following paper if you use the code directly or indirectly in your research/projects.

@inproceedings{RingNet:CVPR:2019,
title = {Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision},
author = {Sanyal, Soubhik and Bolkart, Timo and Feng, Haiwen and Black, Michael},
booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
month = jun,
year = {2019},
month_numeric = {6}
}

Contact

If you have any questions you can contact us at [email protected] and [email protected].

Acknowledgement

  • We thank Ahmed Osman for his support in the tensorflow implementation of FLAME.
  • We thank Raffi Enficiaud and Ahmed Osman for pushing the release of psbody.mesh.
  • We thank Benjamin Pellkofer and Jonathan Williams for helping with our RingNet project website.
Owner
Soubhik Sanyal
Currently Applied Scientist at Amazon Research PhD Student
Soubhik Sanyal
Python Implementation of Chess Playing AI with variable difficulty

Chess AI with variable difficulty level implemented using the MiniMax AB-Pruning Algorithm

Ali Imran 7 Feb 20, 2022
A Simple Long-Tailed Rocognition Baseline via Vision-Language Model

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

Teli Ma 4 Jan 20, 2022
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.

Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models

AdvBox 1.3k Dec 25, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* Any questions or discussions ar

sunshine.lwt 112 Jan 05, 2023
A repository for generating stylized talking 3D and 3D face

style_avatar A repository for generating stylized talking 3D faces and 2D videos. This is the repository for paper Imitating Arbitrary Talking Style f

Haozhe Wu 191 Dec 22, 2022
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
Practical Single-Image Super-Resolution Using Look-Up Table

Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep

Younghyun Jo 116 Dec 23, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023
Google Landmark Recogntion and Retrieval 2021 Solutions

Google Landmark Recogntion and Retrieval 2021 Solutions In this repository you can find solution and code for Google Landmark Recognition 2021 and Goo

Vadim Timakin 5 Nov 25, 2022
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

SUO-SLAM This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv li

Robot Perception & Navigation Group (RPNG) 97 Jan 03, 2023
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

Ruiqi Gao 41 Nov 22, 2022
🛰️ Awesome Satellite Imagery Datasets

Awesome Satellite Imagery Datasets List of aerial and satellite imagery datasets with annotations for computer vision and deep learning. Newest datase

Christoph Rieke 3k Jan 03, 2023
Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Fight Detection from Still Images in the Wild Detecting fights from still images is an important task required to limit the distribution of social med

Şeymanur Aktı 10 Nov 09, 2022
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 03, 2022
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022