Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

Overview

🔉 Sound-guided Semantic Image Manipulation (CVPR2022)

Official Pytorch Implementation

Teaser image

Sound-guided Semantic Image Manipulation
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022

Paper : https://arxiv.org/abs/2112.00007
Project Page: https://kuai-lab.github.io/cvpr2022sound/
Seung Hyun Lee, Wonseok Roh, Wonmin Byeon, Sang Ho Yoon, Chanyoung Kim, Jinkyu Kim*, and Sangpil Kim*

Abstract: The recent success of the generative model shows that leveraging the multi-modal embedding space can manipulate an image using text information. However, manipulating an image with other sources rather than text, such as sound, is not easy due to the dynamic characteristics of the sources. Especially, sound can convey vivid emotions and dynamic expressions of the real world. Here, we propose a framework that directly encodes sound into the multi-modal~(image-text) embedding space and manipulates an image from the space. Our audio encoder is trained to produce a latent representation from an audio input, which is forced to be aligned with image and text representations in the multi-modal embedding space. We use a direct latent optimization method based on aligned embeddings for sound-guided image manipulation. We also show that our method can mix different modalities, i.e., text and audio, which enrich the variety of the image modification. The experiments on zero-shot audio classification and semantic-level image classification show that our proposed model outperforms other text and sound-guided state-of-the-art methods.

💾 Installation

For all the methods described in the paper, is it required to have:

Specific requirements for each method are described in its section. To install CLIP please run the following commands:

conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=<CUDA_VERSION>
pip install ftfy regex tqdm gdown
pip install git+https://github.com/openai/CLIP.git

🔨 Method

Method image

1. CLIP-based Contrastive Latent Representation Learning.

Dataset Curation.

We create an audio-text pair dataset with the vggsound dataset. We also used the audioset dataset as the script below.

  1. Please download vggsound.csv from the link.
  2. Execute download.py to download the audio file of the vggsound dataset.
  3. Execute curate.py to preprocess the audio file (wav to mel-spectrogram).
cd soundclip
python3 download.py
python3 curate.py

Training.

python3 train.py

2. Sound-Guided Image Manipulation.

Direct Latent Code Optimization.

The code relies on the StyleCLIP pytorch implementation.

python3 optimization/run_optimization.py --lambda_similarity 0.002 --lambda_identity 0.0 --truncation 0.7 --lr 0.1 --audio_path "./audiosample/explosion.wav" --ckpt ./pretrained_models/landscape.pt --stylegan_size 256

Results

Zero-shot Audio Classification Accuracy.

Model Supervised Setting Zero-Shot ESC-50 UrbanSound 8K
ResNet50 - 66.8% 71.3%
Ours (Without Self-Supervised) - - 58.7% 63.3%
Ours (Logistic Regression) - - 72.2% 66.8%
Wav2clip - 41.4% 40.4%
AudioCLIP - 69.4% 68.8%
Ours (Without Self-Supervised) - 49.4% 45.6%
Ours - 57.8% 45.7%

Manipulation Results.

LSUN. LSUN image

FFHQ. FFHQ image

To see more diverse examples, please visit our project page!

Citation

@article{lee2021sound,
    title={Sound-Guided Semantic Image Manipulation},
    author={Lee, Seung Hyun and Roh, Wonseok and Byeon, Wonmin and Yoon, Sang Ho and Kim, Chan Young and Kim, Jinkyu and Kim, Sangpil},
    journal={arXiv preprint arXiv:2112.00007},
    year={2021}
}
Owner
CVLAB
CVLAB in Department of artificial intelligence, Korea University
CVLAB
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
3D Generative Adversarial Network

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling This repository contains pre-trained models and sampling

Chengkai Zhang 791 Dec 20, 2022
thundernet ncnn

MMDetection_Lite 基于mmdetection 实现一些轻量级检测模型,安装方式和mmdeteciton相同 voc0712 voc 0712训练 voc2007测试 coco预训练 thundernet_voc_shufflenetv2_1.5 input shape mAP 320

DayBreak 39 Dec 05, 2022
This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark

SILG This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark. If you find this work helpful, please cons

Victor Zhong 17 Nov 27, 2022
Re-TACRED: Addressing Shortcomings of the TACRED Dataset

Re-TACRED Re-TACRED: Addressing Shortcomings of the TACRED Dataset

George Stoica 40 Dec 10, 2022
Rational Activation Functions - Replacing Padé Activation Units

Rational Activations - Learnable Rational Activation Functions First introduce as PAU in Padé Activation Units: End-to-end Learning of Activation Func

<a href=[email protected]"> 38 Nov 22, 2022
Transformer Huffman coding - Complete Huffman coding through transformer

Transformer_Huffman_coding Complete Huffman coding through transformer 2022/2/19

3 May 19, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN

ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN CVPR 2020 (Oral); Pose and Appearance Attributes Transfer;

Men Yifang 400 Dec 29, 2022
Certified Patch Robustness via Smoothed Vision Transformers

Certified Patch Robustness via Smoothed Vision Transformers This repository contains the code for replicating the results of our paper: Certified Patc

Madry Lab 35 Dec 14, 2022
Sinkformers: Transformers with Doubly Stochastic Attention

Code for the paper : "Sinkformers: Transformers with Doubly Stochastic Attention" Paper You will find our paper here. Compat This package has been dev

Michael E. Sander 31 Dec 29, 2022
Automatic differentiation with weighted finite-state transducers.

GTN: Automatic Differentiation with WFSTs Quickstart | Installation | Documentation What is GTN? GTN is a framework for automatic differentiation with

100 Dec 29, 2022
PyElecCL - Electron Monte Carlo Second Checks

PyElecCL Python program to perform second checks for electron Monte Carlo radiat

Reese Haywood 3 Feb 22, 2022
Official implementation of "An Image is Worth 16x16 Words, What is a Video Worth?" (2021 paper)

An Image is Worth 16x16 Words, What is a Video Worth? paper Official PyTorch Implementation Gilad Sharir, Asaf Noy, Lihi Zelnik-Manor DAMO Academy, Al

213 Nov 12, 2022
Neural-net-from-scratch - A simple Neural Network from scratch in Python using the Pymathrix library

A Simple Neural Network from scratch A Simple Neural Network from scratch in Pyt

Youssef Chafiqui 2 Jan 07, 2022
Official Repo for Ground-aware Monocular 3D Object Detection for Autonomous Driving

Visual 3D Detection Package: This repo aims to provide flexible and reproducible visual 3D detection on KITTI dataset. We expect scripts starting from

Yuxuan Liu 305 Dec 19, 2022
EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022