QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

Overview

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

Environment

  • Tested on Ubuntu 14.04 64bit and 16.04 64bit

Installation

# disable ptrace_scope for PIN
$ echo 0|sudo tee /proc/sys/kernel/yama/ptrace_scope

# install z3 and system deps
$ ./setup.sh

# install using virtual env
$ virtualenv venv
$ source venv/bin/activate
$ pip install .

Installation using Docker

# disable ptrace_scope for PIN
$ echo 0|sudo tee /proc/sys/kernel/yama/ptrace_scope

# build docker image
$ docker build -t qsym ./

# run docker image
$ docker run --cap-add=SYS_PTRACE -it qsym /bin/bash

Installation using vagrant

Since QSYM is dependent on underlying kernel because of its old PIN, we decided to provide a convenient way to install QSYM with VM. Please take a look our vagrant directory.

Run hybrid fuzzing with AFL

# require to set the following environment variables
#   AFL_ROOT: afl directory (http://lcamtuf.coredump.cx/afl/)
#   INPUT: input seed files
#   OUTPUT: output directory
#   AFL_CMDLINE: command line for a testing program for AFL (ASAN + instrumented)
#   QSYM_CMDLINE: command line for a testing program for QSYM (Non-instrumented)

# run AFL master
$ $AFL_ROOT/afl-fuzz -M afl-master -i $INPUT -o $OUTPUT -- $AFL_CMDLINE
# run AFL slave
$ $AFL_ROOT/afl-fuzz -S afl-slave -i $INPUT -o $OUTPUT -- $AFL_CMDLINE
# run QSYM
$ bin/run_qsym_afl.py -a afl-slave -o $OUTPUT -n qsym -- $QSYM_CMDLINE

Run for testing

$ cd tests
$ python build.py
$ python -m pytest -n $(nproc)

Troubleshooting

If you find that you can't get QSYM to work and you get the undefined symbol: Z3_is_seq_sort error in pin.log file, please make sure that you compile and make the target when you're in the virtualenv (env) environment. When you're out of this environment and you compile the target, QSYM can't work with the target binary and issues the mentioned error in pin.log file. This will save your time a lot to compile and make the target from env and then run QSYM on the target, then QSYM will work like a charm!

Authors

Publications

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

@inproceedings{yun:qsym,
  title        = {{QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing}},
  author       = {Insu Yun and Sangho Lee and Meng Xu and Yeongjin Jang and Taesoo Kim},
  booktitle    = {Proceedings of the 27th USENIX Security Symposium (Security)},
  month        = aug,
  year         = 2018,
  address      = {Baltimore, MD},
}
Owner
gts3.org ([email protected])
https://gts3.org
gts3.org (<a href=[email protected])">
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. The Anti-Backdoor Learning

Yige-Li 51 Dec 07, 2022
This is the pytorch code for the paper Curious Representation Learning for Embodied Intelligence.

Curious Representation Learning for Embodied Intelligence This is the pytorch code for the paper Curious Representation Learning for Embodied Intellig

19 Oct 19, 2022
Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Event Queue Dialect Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure. Motivation The m

Cornell Capra 23 Dec 08, 2022
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video 📹 Our video on Youtube and bilibili demonstrates the evaluation of

Intelligent Vision for Robotics in Complex Environment 12 Dec 18, 2022
TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

52 Dec 23, 2022
A repo for Causal Imitation Learning under Temporally Correlated Noise

CausIL A repo for Causal Imitation Learning under Temporally Correlated Noise. Running Experiments To re-train an expert, run: python experts/train_ex

Gokul Swamy 5 Nov 01, 2022
PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision.

PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{CV2018, author = {Donny You ( Donny You 40 Sep 14, 2022

Chinese named entity recognization with BiLSTM using Keras

Chinese named entity recognization (Bilstm with Keras) Project Structure ./ ├── README.md ├── data │   ├── README.md │   ├── data 数据集 │   │   ├─

1 Dec 17, 2021
Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.

IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con

0 Oct 24, 2021
Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

Dongkwan Kim 127 Dec 28, 2022
HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision

MLP-Mixer: An all-MLP Architecture for Vision This repo contains PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision. Usage : impo

Rishikesh (ऋषिकेश) 175 Dec 23, 2022
Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks

Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks Requirements python 0.10+ rdkit 2020.03.3.0 biopython 1.78 openbabel 2.4

Neeraj Kumar 3 Nov 23, 2022
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
Adds timm pretrained backbone to pytorch's FasterRcnn model

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Mriganka Nath 12 Dec 03, 2022
This repo is to present various code demos on how to use our Graph4NLP library.

Deep Learning on Graphs for Natural Language Processing Demo The repository contains code examples for DLG4NLP tutorials at NAACL 2021, SIGIR 2021, KD

Graph4AI 143 Dec 23, 2022
A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery

PiSL A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery. Sun, F., Liu, Y. and Sun, H., 2021. Physics-informe

Fangzheng (Andy) Sun 8 Jul 13, 2022
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

PyG 16.5k Jan 08, 2023
Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

3 May 12, 2022