Various Algorithms for Short Text Mining

Overview

Short Text Mining in Python

CircleCI GitHub release Documentation Status Updates Python 3 pypi download stars

Introduction

This package shorttext is a Python package that facilitates supervised and unsupervised learning for short text categorization. Due to the sparseness of words and the lack of information carried in the short texts themselves, an intermediate representation of the texts and documents are needed before they are put into any classification algorithm. In this package, it facilitates various types of these representations, including topic modeling and word-embedding algorithms.

Since release 1.5.2, it runs on Python 3.9. Since release 1.5.0, support for Python 3.6 was decommissioned. Since release 1.2.4, it runs on Python 3.8. Since release 1.2.3, support for Python 3.5 was decommissioned. Since release 1.1.7, support for Python 2.7 was decommissioned. Since release 1.0.8, it runs on Python 3.7 with 'TensorFlow' being the backend for keras. Since release 1.0.7, it runs on Python 3.7 as well, but the backend for keras cannot be TensorFlow. Since release 1.0.0, shorttext runs on Python 2.7, 3.5, and 3.6.

Characteristics:

  • example data provided (including subject keywords and NIH RePORT);
  • text preprocessing;
  • pre-trained word-embedding support;
  • gensim topic models (LDA, LSI, Random Projections) and autoencoder;
  • topic model representation supported for supervised learning using scikit-learn;
  • cosine distance classification;
  • neural network classification (including ConvNet, and C-LSTM);
  • maximum entropy classification;
  • metrics of phrases differences, including soft Jaccard score (using Damerau-Levenshtein distance), and Word Mover's distance (WMD);
  • character-level sequence-to-sequence (seq2seq) learning;
  • spell correction;
  • API for word-embedding algorithm for one-time loading; and
  • Sentence encodings and similarities based on BERT.

Documentation

Documentation and tutorials for shorttext can be found here: http://shorttext.rtfd.io/.

See tutorial for how to use the package, and FAQ.

Installation

To install it, in a console, use pip.

>>> pip install -U shorttext

or, if you want the most recent development version on Github, type

>>> pip install -U git+https://github.com/stephenhky/[email protected]

Developers are advised to make sure Keras >=2 be installed. Users are advised to install the backend Tensorflow (preferred) or Theano in advance. It is desirable if Cython has been previously installed too.

See installation guide for more details.

Issues

To report any issues, go to the Issues tab of the Github page and start a thread. It is welcome for developers to submit pull requests on their own to fix any errors.

Contributors

If you would like to contribute, feel free to submit the pull requests. You can talk to me in advance through e-mails or the Issues page.

Useful Links

News

  • 07/11/2021: shorttext 1.5.3 released.
  • 07/06/2021: shorttext 1.5.2 released.
  • 04/10/2021: shorttext 1.5.1 released.
  • 04/09/2021: shorttext 1.5.0 released.
  • 02/11/2021: shorttext 1.4.8 released.
  • 01/11/2021: shorttext 1.4.7 released.
  • 01/03/2021: shorttext 1.4.6 released.
  • 12/28/2020: shorttext 1.4.5 released.
  • 12/24/2020: shorttext 1.4.4 released.
  • 11/10/2020: shorttext 1.4.3 released.
  • 10/18/2020: shorttext 1.4.2 released.
  • 09/23/2020: shorttext 1.4.1 released.
  • 09/02/2020: shorttext 1.4.0 released.
  • 07/23/2020: shorttext 1.3.0 released.
  • 06/05/2020: shorttext 1.2.6 released.
  • 05/20/2020: shorttext 1.2.5 released.
  • 05/13/2020: shorttext 1.2.4 released.
  • 04/28/2020: shorttext 1.2.3 released.
  • 04/07/2020: shorttext 1.2.2 released.
  • 03/23/2020: shorttext 1.2.1 released.
  • 03/21/2020: shorttext 1.2.0 released.
  • 12/01/2019: shorttext 1.1.6 released.
  • 09/24/2019: shorttext 1.1.5 released.
  • 07/20/2019: shorttext 1.1.4 released.
  • 07/07/2019: shorttext 1.1.3 released.
  • 06/05/2019: shorttext 1.1.2 released.
  • 04/23/2019: shorttext 1.1.1 released.
  • 03/03/2019: shorttext 1.1.0 released.
  • 02/14/2019: shorttext 1.0.8 released.
  • 01/30/2019: shorttext 1.0.7 released.
  • 01/29/2019: shorttext 1.0.6 released.
  • 01/13/2019: shorttext 1.0.5 released.
  • 10/03/2018: shorttext 1.0.4 released.
  • 08/06/2018: shorttext 1.0.3 released.
  • 07/24/2018: shorttext 1.0.2 released.
  • 07/17/2018: shorttext 1.0.1 released.
  • 07/14/2018: shorttext 1.0.0 released.
  • 06/18/2018: shorttext 0.7.2 released.
  • 05/30/2018: shorttext 0.7.1 released.
  • 05/17/2018: shorttext 0.7.0 released.
  • 02/27/2018: shorttext 0.6.0 released.
  • 01/19/2018: shorttext 0.5.11 released.
  • 01/15/2018: shorttext 0.5.10 released.
  • 12/14/2017: shorttext 0.5.9 released.
  • 11/08/2017: shorttext 0.5.8 released.
  • 10/27/2017: shorttext 0.5.7 released.
  • 10/17/2017: shorttext 0.5.6 released.
  • 09/28/2017: shorttext 0.5.5 released.
  • 09/08/2017: shorttext 0.5.4 released.
  • 09/02/2017: end of GSoC project. (Report)
  • 08/22/2017: shorttext 0.5.1 released.
  • 07/28/2017: shorttext 0.4.1 released.
  • 07/26/2017: shorttext 0.4.0 released.
  • 06/16/2017: shorttext 0.3.8 released.
  • 06/12/2017: shorttext 0.3.7 released.
  • 06/02/2017: shorttext 0.3.6 released.
  • 05/30/2017: GSoC project (Chinmaya Pancholi, with gensim)
  • 05/16/2017: shorttext 0.3.5 released.
  • 04/27/2017: shorttext 0.3.4 released.
  • 04/19/2017: shorttext 0.3.3 released.
  • 03/28/2017: shorttext 0.3.2 released.
  • 03/14/2017: shorttext 0.3.1 released.
  • 02/23/2017: shorttext 0.2.1 released.
  • 12/21/2016: shorttext 0.2.0 released.
  • 11/25/2016: shorttext 0.1.2 released.
  • 11/21/2016: shorttext 0.1.1 released.

Possible Future Updates

  • Dividing components to other packages;
  • More available corpus.
Comments
  • standalone ?

    standalone ?

    Hi. I have many questions.... :-)

    I'm a beginner for python. Is there any method to run the code standalone ?

    e.g. I trained my data. And I'd like to see the scores on terminal by classifier.score('apple') . The word 'apple' can be changed.

    Thank you regards,

    opened by chocosando 20
  • ImportError: No module named classification_exceptions

    ImportError: No module named classification_exceptions

    import shorttext

    
    ---------------------------------------------------------------------------
    ImportError                               Traceback (most recent call last)
    <ipython-input-5-cb09b3381050> in <module>()
    ----> 1 import shorttext
    
    /usr/local/lib/python2.7/dist-packages/shorttext/__init__.py in <module>()
          5 sys.path.append(thisdir)
          6 
    ----> 7 from . import utils
          8 from . import data
          9 from . import classifiers
    
    /usr/local/lib/python2.7/dist-packages/shorttext/utils/__init__.py in <module>()
          4 from . import textpreprocessing
          5 from .wordembed import load_word2vec_model
    ----> 6 from . import compactmodel_io
          7 
          8 from .textpreprocessing import spacy_tokenize as tokenize
    
    /usr/local/lib/python2.7/dist-packages/shorttext/utils/compactmodel_io.py in <module>()
         13 from functools import partial
         14 
    ---> 15 import utils.classification_exceptions as e
         16 
         17 def removedir(dir):
    
    ImportError: No module named classification_exceptions
    
    
    opened by spate141 11
  • ImportError: dlopen: cannot load any more object with static TLS

    ImportError: dlopen: cannot load any more object with static TLS

    Hi, I got the following error when i import shorttext, how shall i resolve?

    Using TensorFlow backend.

    I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcublas.so.7.5 locally I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcudnn.so.5 locally I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcufft.so.7.5 locally I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcuda.so.1 locally I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcurand.so.7.5 locally Traceback (most recent call last): File "", line 1, in File "/usr/local/lib/python2.7/dist-packages/shorttext/init.py", line 7, in from . import utils File "/usr/local/lib/python2.7/dist-packages/shorttext/utils/init.py", line 3, in from . import gensim_corpora File "/usr/local/lib/python2.7/dist-packages/shorttext/utils/gensim_corpora.py", line 2, in from .textpreprocessing import spacy_tokenize as tokenize File "/usr/local/lib/python2.7/dist-packages/shorttext/utils/textpreprocessing.py", line 5, in import spacy File "/usr/local/lib/python2.7/dist-packages/spacy/init.py", line 8, in from . import en, de, zh, es, it, hu, fr, pt, nl, sv, fi, bn, he File "/usr/local/lib/python2.7/dist-packages/spacy/en/init.py", line 4, in from ..language import Language File "/usr/local/lib/python2.7/dist-packages/spacy/language.py", line 12, in from .syntax.parser import get_templates ImportError: dlopen: cannot load any more object with static TLS

    opened by kenyeung128 8
  • extend score to take an array of shorttext

    extend score to take an array of shorttext

    Currently, score takes only a single input and as a result, the method is very slow if you are trying to classify thousands of examples. Is there a way you can generate scores for 10K+ samples at the same time.

    opened by rja172 6
  • Importing problem (not installation) over google colab

    Importing problem (not installation) over google colab

    I am experimenting with the library for the first time. The installation was successful and didn't need any extra steps. however when I started importing the library I got the following error related to keras:

    /usr/local/lib/python3.7/dist-packages/shorttext/generators/bow/AutoEncodingTopicModeling.py in () 8 from gensim.corpora import Dictionary 9 from keras import Input ---> 10 from keras.engine import Model 11 from keras.layers import Dense 12 from scipy.spatial.distance import cosine

    ImportError: cannot import name 'Model' from 'keras.engine' (/usr/local/lib/python3.7/dist-packages/keras/engine/init.py)

    I tried to install keras separately but no improvement. any suggestions would be appreciated.

    opened by yomnamahmoud 6
  • RuntimeWarning: overflow encountered in exp2 topicmodeler.train

    RuntimeWarning: overflow encountered in exp2 topicmodeler.train

    Code: trainclassdict = shorttext.data.nihreports(sample_size=None) topicmodeler = shorttext.generators.LDAModeler() topicmodeler.train(trainclassdict, 128) Error message: /lib/python2.7/site-packages/gensim/models/ldamodel.py:535: RuntimeWarning: overflow encountered in exp2 perwordbound, np.exp2(-perwordbound), len(chunk), corpus_words

    Then the results are variable for topicmodeler.retrieve_topicvec('stem cell research')

    opened by dbonner 6
  • Remove negation terms from stopwords.txt

    Remove negation terms from stopwords.txt

    I noticed that stopwords.txt includes negation terms such as "no" and "not". These terms revert the meaning of a word or a sentence, so they should be preserved in the text data. For example, "not a good idea" would become "good idea" after stopword removal. Therefore, I recommend removing negation terms from the stopword list. Thanks!

    opened by star1327p 5
  • Input to shorttext.generators.LDAModeler()

    Input to shorttext.generators.LDAModeler()

    I was wondering what should be the format of data as input for:

    shorttext.generators.LDAModeler() topicmodeler.train(data, 100)

    Can I feed it with a pandas column? Or it should be in a dictionary format? If a dictionary, what should be the keys? I have a large set of tweets.

    opened by malizad 5
  • from shorttext.classifiers import MaxEntClassifier is it regression?

    from shorttext.classifiers import MaxEntClassifier is it regression?

    seems to be maxent is a fancy word for regression or you do have something special in your maxent? https://www.quora.com/What-is-the-relationship-between-Log-Linear-model-MaxEnt-model-and-Logistic-Regression or https://en.wikipedia.org/wiki/Multinomial_logistic_regression

    Multinomial logistic regression is known by a variety of other names, including polytomous LR,[2][3] multiclass LR, softmax regression, multinomial logit, the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model.[4]
    
    opened by Sandy4321 5
  • No Python 3.6 support with SciPy 1.6

    No Python 3.6 support with SciPy 1.6

    opened by Dobatymo 4
  • Data nihreports not available anymore

    Data nihreports not available anymore

    Some datasets are not available anymore.

    For example the following: nihtraindata = shorttext.data.nihreports(sample_size=None)

    Error message:

    Downloading...
    Source:  http://storage.googleapis.com/pyshorttext/nih_grant_public/nih_full.csv.zip
    Failure to download file!
    (<class 'urllib.error.HTTPError'>, <HTTPError 404: 'Not Found'>, <traceback object at 0x7f09063ed788>)
    

    Python error:

    HTTPError: HTTP Error 404: Not Found
    
    During handling of the above exception, another exception occurred:
    

    When opening the link the same error appears:

    image

    opened by AlessandroVol23 4
Releases(1.5.8)
Owner
Kwan-Yuet "Stephen" Ho
quantitative research, machine learning, data science, text mining, physics
Kwan-Yuet
Source code of paper "BP-Transformer: Modelling Long-Range Context via Binary Partitioning"

BP-Transformer This repo contains the code for our paper BP-Transformer: Modeling Long-Range Context via Binary Partition Zihao Ye, Qipeng Guo, Quan G

Zihao Ye 119 Nov 14, 2022
This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

GPT-2 Catalan playground and scripts to train a GPT-2 model either from scrath or from another pretrained model.

Laura 1 Jan 28, 2022
BookNLP, a natural language processing pipeline for books

BookNLP BookNLP is a natural language processing pipeline that scales to books and other long documents (in English), including: Part-of-speech taggin

654 Jan 02, 2023
customer care chatbot made with Rasa Open Source.

Customer Care Bot Customer care bot for ecomm company which can solve faq and chitchat with users, can contact directly to team. 🛠 Features Basic E-c

Dishant Gandhi 23 Oct 27, 2022
NLP Overview

NLP-Overview Introduction The field of NPL encompasses a variety of topics which involve the computational processing and understanding of human langu

PeterPham 1 Jan 13, 2022
Datasets of Automatic Keyphrase Extraction

This repository contains 20 annotated datasets of Automatic Keyphrase Extraction made available by the research community. Following are the datasets and the original papers that proposed them. If yo

LIAAD - Laboratory of Artificial Intelligence and Decision Support 163 Dec 23, 2022
Korean Simple Contrastive Learning of Sentence Embeddings using SKT KoBERT and kakaobrain KorNLU dataset

KoSimCSE Korean Simple Contrastive Learning of Sentence Embeddings implementation using pytorch SimCSE Installation git clone https://github.com/BM-K/

34 Nov 24, 2022
This repository contains the code for "Generating Datasets with Pretrained Language Models".

Datasets from Instructions (DINO 🦕 ) This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces

Timo Schick 154 Jan 01, 2023
Python port of Google's libphonenumber

phonenumbers Python Library This is a Python port of Google's libphonenumber library It supports Python 2.5-2.7 and Python 3.x (in the same codebase,

David Drysdale 3.1k Dec 29, 2022
A Practitioner's Guide to Natural Language Processing

Learn how to process, classify, cluster, summarize, understand syntax, semantics and sentiment of text data with the power of Python! This repository contains code and datasets used in my book, Text

Dipanjan (DJ) Sarkar 1.5k Jan 03, 2023
Code for Text Prior Guided Scene Text Image Super-Resolution

Code for Text Prior Guided Scene Text Image Super-Resolution

82 Dec 26, 2022
A python framework to transform natural language questions to queries in a database query language.

__ _ _ _ ___ _ __ _ _ / _` | | | |/ _ \ '_ \| | | | | (_| | |_| | __/ |_) | |_| | \__, |\__,_|\___| .__/ \__, | |_| |_| |___/

Machinalis 1.2k Dec 18, 2022
Paddle2.x version AI-Writer

Paddle2.x 版本AI-Writer 用魔改 GPT 生成网文。Tuned GPT for novel generation.

yujun 74 Jan 04, 2023
CorNet Correlation Networks for Extreme Multi-label Text Classification

CorNet Correlation Networks for Extreme Multi-label Text Classification Prerequisites python==3.6.3 pytorch==1.2.0 torchgpipe==0.0.5 click==7.0 ruamel

Guangxu Xun 38 Dec 31, 2022
端到端的长本文摘要模型(法研杯2020司法摘要赛道)

端到端的长文本摘要模型(法研杯2020司法摘要赛道)

苏剑林(Jianlin Su) 334 Jan 08, 2023
IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models

IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models. Everything is pure Python and PyTorch based to keep it as simple and beginner-friendly, yet powerful as possible.

Digital Phonetics at the University of Stuttgart 247 Jan 05, 2023
Python module (C extension and plain python) implementing Aho-Corasick algorithm

pyahocorasick pyahocorasick is a fast and memory efficient library for exact or approximate multi-pattern string search meaning that you can find mult

Wojciech Muła 763 Dec 27, 2022
a chinese segment base on crf

Genius Genius是一个开源的python中文分词组件,采用 CRF(Conditional Random Field)条件随机场算法。 Feature 支持python2.x、python3.x以及pypy2.x。 支持简单的pinyin分词 支持用户自定义break 支持用户自定义合并词

duanhongyi 237 Nov 04, 2022
Spacy-ginza-ner-webapi - Named Entity Recognition API with spaCy and GiNZA

Named Entity Recognition API with spaCy and GiNZA I wrote a blog post about this

Yuki Okuda 3 Feb 27, 2022
Host your own GPT-3 Discord bot

GPT3 Discord Bot Host your own GPT-3 Discord bot i'd host and make the bot invitable myself, however GPT3 terms of service prohibit public use of GPT3

[something hillarious here] 8 Jan 07, 2023