Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Overview

Adversarial Training Against Location-Optimized Adversarial Patches

arXiv | Paper | Code | Video | Slides

Code for the paper:

Sukrut Rao, David Stutz, Bernt Schiele. (2020) Adversarial Training Against Location-Optimized Adversarial Patches. In: Bartoli A., Fusiello A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science, vol 12539. Springer, Cham. https://doi.org/10.1007/978-3-030-68238-5_32

Setup

Requirements

  • Python 3.7 or above
  • PyTorch
  • scipy
  • h5py
  • scikit-image
  • scikit-learn

Optional requirements

To use script to convert data to HDF5 format

  • torchvision
  • Pillow
  • pandas

To use Tensorboard logging

  • tensorboard

With the exception of Python and PyTorch, all requirements can be installed directly using pip:

$ pip install -r requirements.txt

Setting the paths

In common/paths.py, set the following variables:

  • BASE_DATA: base path for datasets.
  • BASE_EXPERIMENTS: base path for trained models and perturbations after attacks.
  • BASE_LOGS: base path for tensorboard logs (if used).

Data

Data needs to be provided in the HDF5 format. To use a dataset, use the following steps:

  • In common/paths.py, set BASE_DATA to the base path where data will be stored.
  • For each dataset, create a directory named <dataset-name> in BASE_DATA
  • Place the following files in this directory:
    • train_images.h5: Training images
    • train_labels.h5: Training labels
    • test_images.h5: Test images
    • test_labels.h5: Test labels

A script create_dataset_h5.py has been provided to convert data in a comma-separated CSV file consisting of full paths to images and their corresponding labels to a HDF5 file. To use this script, first set BASE_DATA in common/paths.py. If the files containing training and test data paths and labels are train.csv and test.csv respectively, use:

$ python scripts/create_dataset_h5.py --train_csv /path/to/train.csv --test_csv /path/to/test.csv --dataset dataset_name

where dataset_name is the name for the dataset.

Training and evaluating a model

Training

To train a model, use:

$ python scripts/train.py [options]

A list of available options and their descriptions can be found by using:

$ python scripts/train.py -h

Evaluation

To evaluate a trained model, use:

$ python scripts/evaluate.py [options]

A list of available options and their descriptions can be found by using:

$ python scripts/evaluate.py -h

Using models and attacks from the paper

The following provides the arguments to use with the training and evaluation scripts to train the models and run the attacks described in the paper. The commands below assume that the dataset is named cifar10 and has 10 classes.

Models

Normal

$ python scripts/train.py --cuda --dataset cifar10 --n_classes 10 --cuda --mode normal --log_dir logs --snapshot_frequency 5 --models_dir models --use_tensorboard --use_flip

Occlusion

$ python scripts/train.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --location random --exclude_box 11 11 10 10 --epsilon 0.1 --signed_grad --max_iterations 1 --log_dir logs --snapshot_frequency 5 --models_dir models --use_tensorboard --use_flip

AT-Fixed

$ python scripts/train.py --cuda --dataset cifar10 --n_classes 10 --mask_pos 3 3 --mask_dims 8 8 --mode adversarial --location fixed --exclude_box 11 11 10 10 --epsilon 0.1 --signed_grad --max_iterations 25 --log_dir logs --snapshot_frequency 5 --models_dir models --use_tensorboard --use_flip

AT-Rand

$ python scripts/train.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --location random --exclude_box 11 11 10 10 --epsilon 0.1 --signed_grad --max_iterations 25 --log_dir logs --snapshot_frequency 5 --models_dir models --use_tensorboard --use_flip

AT-RandLO

$ python scripts/train.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --location random --exclude_box 11 11 10 10 --epsilon 0.1 --signed_grad --max_iterations 25 --optimize_location --opt_type random --stride 2 --log_dir logs --snapshot_frequency 5 --models_dir models --use_tensorboard --use_flip

AT-FullLO

$ python scripts/train.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --location random --exclude_box 11 11 10 10 --epsilon 0.1 --signed_grad --max_iterations 25 --optimize_location --opt_type full --stride 2 --log_dir logs --snapshot_frequency 5 --models_dir models --use_tensorboard --use_flip

Attacks

The arguments used here correspond to using 100 iterations and 30 attempts. These can be changed by appropriately setting --iterations and --attempts respectively.

AP-Fixed

$ python scripts/evaluate.py --cuda --dataset cifar10 --n_classes 10 --mask_pos 3 3 --mask_dims 8 8 --mode adversarial --log_dir logs --models_dir models --saved_model_file model_complete_200 --attempts 30 --location fixed --epsilon 0.05 --iterations 100 --signed_grad --perturbations_file perturbations --use_tensorboard

AP-Rand

$ python scripts/evaluate.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --log_dir logs --models_dir models --saved_model_file model_complete_200 --attempts 30 --location random --epsilon 0.05 --iterations 100 --exclude_box 11 11 10 10 --signed_grad --perturbations_file perturbations --use_tensorboard

AP-RandLO

$ python scripts/evaluate.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --log_dir logs --models_dir models --saved_model_file model_complete_200 --attempts 30 --location random --epsilon 0.05 --iterations 100 --exclude_box 11 11 10 10 --optimize_location --opt_type random --stride 2 --signed_grad --perturbations_file perturbations --use_tensorboard

AP-FullLO

$ python scripts/evaluate.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --log_dir logs --models_dir models --saved_model_file model_complete_200 --attempts 30 --location random --epsilon 0.05 --iterations 100 --exclude_box 11 11 10 10 --optimize_location --opt_type full --stride 2 --signed_grad --perturbations_file perturbations --use_tensorboard

Citation

Please cite the paper as follows:

@InProceedings{Rao2020Adversarial,
author = {Sukrut Rao and David Stutz and Bernt Schiele},
title = {Adversarial Training Against Location-Optimized Adversarial Patches},
booktitle = {Computer Vision -- ECCV 2020 Workshops},
year = {2020},
editor = {Adrien Bartoli and Andrea Fusiello},
publisher = {Springer International Publishing},
address = {Cham},
pages = {429--448},
isbn = {978-3-030-68238-5}
}

Acknowledgement

This repository uses code from davidstutz/confidence-calibrated-adversarial-training.

License

Copyright (c) 2020 Sukrut Rao, David Stutz, Max-Planck-Gesellschaft

Please read carefully the following terms and conditions and any accompanying documentation before you download and/or use this software and associated documentation files (the "Software").

The authors hereby grant you a non-exclusive, non-transferable, free of charge right to copy, modify, merge, publish, distribute, and sublicense the Software for the sole purpose of performing non-commercial scientific research, non-commercial education, or non-commercial artistic projects.

Any other use, in particular any use for commercial purposes, is prohibited. This includes, without limitation, incorporation in a commercial product, use in a commercial service, or production of other artefacts for commercial purposes.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

You understand and agree that the authors are under no obligation to provide either maintenance services, update services, notices of latent defects, or corrections of defects with regard to the Software. The authors nevertheless reserve the right to update, modify, or discontinue the Software at any time.

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. You agree to cite the corresponding papers (see above) in documents and papers that report on research using the Software.

Multi-query Video Retreival

Multi-query Video Retreival

Princeton Visual AI Lab 17 Nov 22, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

Meta Research 283 Dec 30, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
The full training script for Enformer (Tensorflow Sonnet) on TPU clusters

Enformer TPU training script (wip) The full training script for Enformer (Tensorflow Sonnet) on TPU clusters, in an effort to migrate the model to pyt

Phil Wang 10 Oct 19, 2022
Codeflare - Scale complex AI/ML pipelines anywhere

Scale complex AI/ML pipelines anywhere CodeFlare is a framework to simplify the integration, scaling and acceleration of complex multi-step analytics

CodeFlare 169 Nov 29, 2022
SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

SEOVER-Master This code is the implementation of paper: SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

4 Feb 24, 2022
FAMIE is a comprehensive and efficient active learning (AL) toolkit for multilingual information extraction (IE)

FAMIE: A Fast Active Learning Framework for Multilingual Information Extraction

18 Sep 01, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022
Implementation of "Fast and Flexible Temporal Point Processes with Triangular Maps" (Oral @ NeurIPS 2020)

Fast and Flexible Temporal Point Processes with Triangular Maps This repository includes a reference implementation of the algorithms described in "Fa

Oleksandr Shchur 20 Dec 02, 2022
Various operations like path tracking, counting, etc by using yolov5

Object-tracing-with-YOLOv5 Various operations like path tracking, counting, etc by using yolov5

Pawan Valluri 5 Nov 28, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ryuichiro Hataya 50 Dec 05, 2022
Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy Simplex Algorithm is a popular algorithm for linear programmi

Reda BELHAJ 2 Oct 12, 2022
A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 🤖

PyMouseBot If you're from GT and annoyed with SGVPN idle timeouts while working on development laptop, You might find this useful. A python cli bot to

Oaker Min 6 Oct 24, 2022
Code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection"

CTDNet The PyTorch code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection" Requirements Python 3.6

CVTEAM 28 Oct 20, 2022
Active learning for Mask R-CNN in Detectron2

MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i

49 Dec 20, 2022
An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

Kakao Brain 72 Dec 28, 2022
Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021)

Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021) Zeyu Wang, Sherry Qiu, Nicole Feng, Holly Rushmeier, Leonard McMill

Zach Zeyu Wang 23 Dec 09, 2022
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022