PyArmadillo: an alternative approach to linear algebra in Python

Overview

PyArmadillo

PyArmadillo: an alternative approach to linear algebra in Python

PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use. It aims to provide a high-level syntax and functionality deliberately similar to Matlab/Octave, allowing mathematical operations to be expressed in a familiar and natural manner. PyArmadillo provides objects for matrices and cubes, as well as over 200 associated functions for manipulating data stored in the objects. All functions are accessible in one flat structure. Integer, floating point and complex numbers are supported. Various matrix factorisations are provided through integration with LAPACK, or one of its high performance drop-in replacements such as Intel MKL or OpenBLAS.

While frameworks such as NumPy and SciPy are available for Python, they tend to be unnecessarily verbose and cumbersome to use from a linear algebra point of view. These frameworks require users to handle data types that are not immediately intuitive, have a structure that complicates the use of common functions, and use syntax that considerably differs from Matlab.

This library is co-led by Jason Rumengan, me and Conrad Sanderson.

You might also like...
QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

QR2Pass This is a proof of concept for an alternative (passwordless) authenticat

Plover-tapey-tape: an alternative to Plover’s built-in paper tape

plover-tapey-tape plover-tapey-tape is an alternative to Plover’s built-in paper

A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding
A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding

Business Problem A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maxim

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

A python library to build Model Trees with Linear Models at the leaves.
A python library to build Model Trees with Linear Models at the leaves.

A python library to build Model Trees with Linear Models at the leaves.

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy
Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy Simplex Algorithm is a popular algorithm for linear programmi

Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Comments
  • may you do me a favor. i wanna transfer matlab function to python in pyarma

    may you do me a favor. i wanna transfer matlab function to python in pyarma

    matlab function ` function output =NN_F(input)

    layer_nodes_num=[200,200,150,150]; bias=0.00001; %input=traindata(:,1); pre_layer_nodes_num=length(input); pre_layer_nodes_value=input'; % input for l=1:length(layer_nodes_num) > curr_layer_nodes_num=layer_nodes_num(l);

    clear curr_layer_nodes_value;
    for it=1:curr_layer_nodes_num
        curr_node_input_weight=randn(1,pre_layer_nodes_num);
        xx=sum(pre_layer_nodes_value.*curr_node_input_weight);
        curr_layer_nodes_value(it)=tanh(xx/2.5);
    end
    pre_layer_nodes_value=curr_layer_nodes_value;
    pre_layer_nodes_num=curr_layer_nodes_num;
    

    end output=curr_layer_nodes_value; end `

    opened by luyifanlu 6
  • Need thoughts on v0.500.0!

    Need thoughts on v0.500.0!

    Hi community,

    Thanks for the support! ~~v0.500.0 is in preparation.~~

    ~~Feel free to give out some thoughts on PyArmadillo v0.400.0 after having a play!~~

    We are happy to announce v0.500.0 is released! 🥳 🥳 🥳

    You are more than welcome to use our library in your own projects and other work :D

    opened by terryyz 6
Releases(v0.500.0)
  • v0.500.0(Feb 10, 2021)

    v0.500.0 Updates:

    • instances of mat and cube are initialised to contain zero-valued elements by default
    • added standalone zeros(), ones(), randu(), randn(), eye()
    • added pyarma_rng.set_seed(value) and pyarma_rng.set_seed_random()
    • added extra forms for lu(), qr(), qr_econ(), qz(), svd_econ()
    • added subscripting for size objects
    • range() renamed to spread() to prevent conflicts with built-in range() in Python
    • for solve(), solve_opts_* flags renamed to solve_opts.* (eg. solve_opts_fast is now solve_opts.fast)
    • for mat and cube constructors, fill_* flags renamed to fill.* (eg. fill_zeros is now fill.zeros)

    Download

    For downloading the packages, please visit here

    Source code(tar.gz)
    Source code(zip)
  • v0.490.0(Feb 8, 2021)

  • v0.400.0(Feb 3, 2021)

    Installation Notes

    • See the README file in the .tar.xz package for full installation instructions

    • Installation requirements:

      • at least Python 3.6; the minimum recommended version is Python 3.8
      • a C++ compiler that supports at least the C++11 standard
      • at least 8 GB of RAM
      • 64-bit CPU, preferably with 4+ cores
      • OpenBLAS and LAPACK
    • If you encounter any bugs or regressions, please report them

    • If you use PyArmadillo in your research and/or software, please cite the associated papers; citations are useful for the continued development and maintenance of the library

    • Linux based operating systems (eg. Fedora, Ubuntu, CentOS, Red Hat, Debian, etc)

      • Before installing PyArmadillo, first install OpenBLAS, LAPACK, Python 3, and pip3, along with the corresponding development/header files

      • On CentOS 8 / RHEL 8, the CentOS PowerTools repository may first need to be enabled: dnf config-manager --set-enabled powertools

      • Recommended packages to install before installing PyArmadillo: Fedora, CentOS, RHEL: gcc-c++, libstdc++-devel, openblas-devel, lapack-devel, python3-devel, python3-pip Ubuntu and Debian: g++, libopenblas-dev, liblapack-dev, python3-dev, python3-pip

    • macOS

      • Before installing PyArmadillo, install Xcode (version 8 or later) and then type the following command in a terminal window: xcode-select --install

      • Xcode command-line tools include the Python 3 development files, but pip3 needs to be updated: pip3 install --user --upgrade pip

      • The "Accelerate" framework is used for accessing BLAS and LAPACK functions; see the README file in the package for more information

    • Windows (x64)

      • Before installing Pyarmadillo, fist install Microsoft Visual Studio (2019 or later) and use the x64 Native Tools Command Prompt

      • The PyArmadillo package contains pre-compiled OpenBLAS 0.3.10, which is used for accessing BLAS and LAPACK functions

      • Alternative implementations and/or distributions of BLAS and LAPACK are available at:

        • http://software.intel.com/en-us/intel-mkl/
        • http://icl.cs.utk.edu/lapack-for-windows/lapack/
        • http://ylzhao.blogspot.com.au/2013/10/blas-lapack-precompiled-binaries-for.html
      • Caveat: 32-bit Windows (x86) is currently not supported

      • Caveat: for any high performance scientific/engineering workloads, we strongly recommend using a Linux based operating system.

    Source code(tar.gz)
    Source code(zip)
    pyarmadillo-0.400.0.tar.xz(6.56 MB)
Owner
Terry Zhuo
Undergraduate @UNSWComputing; RA @MonashNLP
Terry Zhuo
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
《Train in Germany, Test in The USA: Making 3D Object Detectors Generalize》(CVPR 2020)

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize This paper has been accpeted by Conference on Computer Vision and Pattern Rec

Xiangyu Chen 101 Jan 02, 2023
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Graph Analysis & Deep Learning Laboratory, GRAND 32 Jan 02, 2023
Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size.

Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size. The hub data layout enables rapid transformations and streaming of data while training m

Activeloop 5.1k Jan 08, 2023
Recovering Brain Structure Network Using Functional Connectivity

Recovering-Brain-Structure-Network-Using-Functional-Connectivity Framework: Papers: This repository provides a PyTorch implementation of the models ad

5 Nov 30, 2022
Pun Detection and Location

Pun Detection and Location “The Boating Store Had Its Best Sail Ever”: Pronunciation-attentive Contextualized Pun Recognition Yichao Zhou, Jyun-yu Jia

lawson 3 May 13, 2022
LiDAR R-CNN: An Efficient and Universal 3D Object Detector

LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object

TuSimple 295 Jan 05, 2023
Source code of our work: "Benchmarking Deep Models for Salient Object Detection"

SALOD Source code of our work: "Benchmarking Deep Models for Salient Object Detection". In this works, we propose a new benchmark for SALient Object D

22 Dec 30, 2022
Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices

EMOShip This repository contains the EMO-Film dataset described in the paper "Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis

1 Nov 18, 2022
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022
Tensorflow implementation for Self-supervised Graph Learning for Recommendation

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

152 Jan 07, 2023
A toolkit for developing and comparing reinforcement learning algorithms.

Status: Maintenance (expect bug fixes and minor updates) OpenAI Gym OpenAI Gym is a toolkit for developing and comparing reinforcement learning algori

OpenAI 29.6k Jan 08, 2023
[CVPR 2021] MiVOS - Scribble to Mask module

MiVOS (CVPR 2021) - Scribble To Mask Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] A simplistic network that turns scri

Rex Cheng 65 Dec 22, 2022
Python implementation of "Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation"

MIPNet: Multi-Instance Pose Networks This repository is the official pytorch python implementation of "Multi-Instance Pose Networks: Rethinking Top-Do

Rawal Khirodkar 57 Dec 12, 2022
Comp445 project - Data Communications & Computer Networks

COMP-445 Data Communications & Computer Networks Change Python version in Conda

Peng Zhao 2 Oct 03, 2022
Efficiently computes derivatives of numpy code.

Note: Autograd is still being maintained but is no longer actively developed. The main developers (Dougal Maclaurin, David Duvenaud, Matt Johnson, and

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 6.1k Jan 08, 2023
Learning Open-World Object Proposals without Learning to Classify

Learning Open-World Object Proposals without Learning to Classify Pytorch implementation for "Learning Open-World Object Proposals without Learning to

Dahun Kim 149 Dec 22, 2022
Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks.

The Lottery Ticket Hypothesis for Pre-trained BERT Networks Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks. [NeurIPS

VITA 122 Dec 14, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
Emulation and Feedback Fuzzing of Firmware with Memory Sanitization

BaseSAFE This repository contains the BaseSAFE Rust APIs, introduced by "BaseSAFE: Baseband SAnitized Fuzzing through Emulation". The example/ directo

Security in Telecommunications 138 Dec 16, 2022