BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

Overview

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

Installing The Dependencies

$ conda create --name beametrics python>=3.8
$ conda activate beametrics

WARNING: You need to install, before any package, correct version of pytorch linked to your cuda version.

(beametrics) $ conda install pytorch cudatoolkit=10.1 -c pytorch

Install BEAMetrics:

(beametrics) $ cd BEAMetrics
(beametrics) $ pip install -e .

Install Nubia metric (not on PyPI, 16/08/2021):

(beametrics) git clone https://github.com/wl-research/nubia.git
(beametrics) pip install -r requirements.txt

Alternatively, you can remove nubia from _DEFAULT_METRIC_NAMES in metrics.metric_reporter.

Reproducing the results

First you need to get the processed files, which include the metric scores. You can do that either by simply downloading the processed data (see Section Download Data), or by re-computing the scores (see Section Compute Correlations).

Then, the first bloc in the notebook visualize.ipynb allows to get all the tables from the paper (and also to generate the latex code in data/correlation).

Download the data

All the dataset can be downloaded from this zip file. It needs to be unzipped into the path data before running the correlations.

unzip data.zip

The data folder contains:

  • a subfolder raw containing all the original dataset
  • a subfolder processed containing all the dataset processed in a unified format
  • a subfolder correlation containing all the final correlation results, and the main tables of the paper
  • a subfolder datacards containing all the data cards

Computing the correlations

Processing the files to a clean json with the metrics computed:

python beametrics/run_all.py

The optional argument --dataset allows to compute only on a specific dataset, e.g.:

python run_all.py --dataset SummarizationCNNDM.

The list of the datasets and their corresponding configuration can be found in configs/__init__.

When finished, you can print the final table as in the paper, see the notebook visualize.ipynb.

Data Cards:

For each dataset, a data card is available in the datacard folder. The cards are automatically generated when running run_all.py, by filling the template with the dataset configuration as detailed bellow, in Adding a new dataset.

Adding a new dataset:

In configs/, you need to create a new .py file that inherites from ConfigBase (in configs/co'nfig_base.py). You are expected to fill the mandatory fields that allow to run the code and fill the data card template:

  • file_name: the file name located in data/raw
  • file_name_processed: the file name once processed and formated
  • metric_names: you can pass _DEFAULT_METRIC_NAMES by default or customize it, e.g. metric_names = metric_names + ('sari',) where sari corresponds to a valid metric (see the next section)
  • name_dataset: the name of the dataset as it was published
  • short_name_dataset: few letters that will be used to name the dataset in the final table report
  • languages: the languages of the dataset (e.g. [en] or [en, fr])
  • task: e.g. 'simplification', 'data2text
  • number_examples: the total number of evaluated texts
  • nb_refs: the number of references available in the dataset
  • dimensions_definitions: the evaluated dimensions and their corresponding definition e.g. {'fluency: 'How fluent is the text?'}
  • scale: the scale used during the evaluation, as defined in the protocol
  • source_eval_sets: the dataset from which the source were collected to generate the evaluated examples
  • annotators: some information about who were the annotators
  • sampled_from: the URL where was released the evaluation dataset
  • citation: the citation of the paper where the dataset was released

Your class needs its custom method format_file. The function takes as input the dataset's file_name and return a dictionary d_data. The format for d_data has to be the same for all the datasets:

d_data = {
    key_1: {
        'source': "a_source", 
        'hypothesis': "an_hypothesis",
        'references': ["ref_1", "ref_2", ...],
        'dim_1': float(a_score),
        'dim_2': float(an_other_score),
    },
    ...
    key_n: {
        ...
    }
}

where 'key_1' and 'key_n' are the keys for the first and nth example, dim_1 and dim_2 dimensions corresponding to self.dimensions.

Finally, you need to add your dataset to the dictionary D_ALL_DATASETS located in config/__init__.

Adding a new metric:

First, create a class inheriting from metrics/metrics/MetricBase. Then, simply add it to the dictionary _D_METRICS in metrics/__init__.

For the metric to be computed by default, its name has to be added to either

  • _DEFAULT_METRIC_NAMES: metrics computed on each dataset
  • _DEFAULT_METRIC_NAMES_SRC: metrics computed on dataset that have a text format for their source (are excluded for now image captioning and data2text). These two tuples are located in metrics/metric_reported.

Alternatively, you can add the metric to a specific configuration by adding it to the attribute metric_names in the config.

Deep Learning Head Pose Estimation using PyTorch.

Hopenet is an accurate and easy to use head pose estimation network. Models have been trained on the 300W-LP dataset and have been tested on real data with good qualitative performance.

Nataniel Ruiz 1.3k Dec 26, 2022
Christmas face app for Decathlon xmas coding party!

Christmas Face Application Use this library to create the perfect picture for your christmas cards! Done by Hasib Zunair, Guillaume Brassard and Samue

Hasib Zunair 4 Dec 20, 2021
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambig

王皓波 147 Jan 07, 2023
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"

Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.

Jaeyeon Ahn 2 Mar 22, 2022
Yet Another Reinforcement Learning Tutorial

This repo contains self-contained RL implementations

Sungjoon 65 Dec 10, 2022
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent Peñafiel

Gregory 1 Jan 18, 2022
Deeper DCGAN with AE stabilization

AEGeAN Deeper DCGAN with AE stabilization Parallel training of generative adversarial network as an autoencoder with dedicated losses for each stage.

Tyler Kvochick 36 Feb 17, 2022
Source-to-Source Debuggable Derivatives in Pure Python

Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b

Google 2.2k Jan 01, 2023
General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

QData 154 Dec 21, 2022
Acoustic mosquito detection code with Bayesian Neural Networks

HumBugDB Acoustic mosquito detection with Bayesian Neural Networks. Extract audio or features from our large-scale dataset on Zenodo. This repository

31 Nov 28, 2022
A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

Biomedical Computer Vision @ Uniandes 52 Dec 19, 2022
The source code and dataset for the RecGURU paper (WSDM 2022)

RecGURU About The Project Source code and baselines for the RecGURU paper "RecGURU: Adversarial Learning of Generalized User Representations for Cross

Chenglin Li 17 Jan 07, 2023
Differentiable scientific computing library

xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely

98 Dec 26, 2022
FastyAPI is a Stack boilerplate optimised for heavy loads.

FastyAPI A FastAPI based Stack boilerplate for heavy loads. Explore the docs » View Demo · Report Bug · Request Feature Table of Contents About The Pr

Ali Chaayb 47 Dec 27, 2022
Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.

SMPL2 An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outp

JinTian 20 Oct 17, 2022
Video Matting via Consistency-Regularized Graph Neural Networks

Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,

41 Dec 26, 2022
Train Dense Passage Retriever (DPR) with a single GPU

Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G

Luyu Gao 92 Jan 02, 2023
Local Attention - Flax module for Jax

Local Attention - Flax Autoregressive Local Attention - Flax module for Jax Install $ pip install local-attention-flax Usage from jax import random fr

Phil Wang 16 Jun 16, 2022