A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.

Overview

ARES

This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning research focusing on benchmarking adversarial robustness on image classification correctly and comprehensively.

We benchmark the adversarial robustness using 15 attacks and 16 defenses under complete threat models, which is described in the following paper

Benchmarking Adversarial Robustness on Image Classification (CVPR 2020, Oral)

Yinpeng Dong, Qi-An Fu, Xiao Yang, Tianyu Pang, Hang Su, Zihao Xiao, and Jun Zhu.

Feature overview:

  • Built on TensorFlow, and support TensorFlow & PyTorch models with the same interface.
  • Support many attacks in various threat models.
  • Provide ready-to-use pre-trained baseline models (8 on ImageNet & 8 on CIFAR10).
  • Provide efficient & easy-to-use tools for benchmarking models.

Citation

If you find ARES useful, you could cite our paper on benchmarking adversarial robustness using all models, all attacks & defenses supported in ARES. We provide a BibTeX entry of this paper below:

@inproceedings{dong2020benchmarking,
  title={Benchmarking Adversarial Robustness on Image Classification},
  author={Dong, Yinpeng and Fu, Qi-An and Yang, Xiao and Pang, Tianyu and Su, Hang and Xiao, Zihao and Zhu, Jun},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  pages={321--331},
  year={2020}
}

Installation

Since ARES is still under development, please clone the repository and install the package:

git clone https://github.com/thu-ml/ares
cd ares/
pip install -e .

The requirements.txt includes its dependencies, you might want to change PyTorch's version as well as TensorFlow 1's version. TensorFlow 1.13 or later should work fine.

As for python version, Python 3.5 or later should work fine.

The Boundary attack and the Evolutionary attack require mpi4py and a working MPI with enough localhost slots. For example, you could set the OMPI_MCA_rmaps_base_oversubscribe environment variable to yes for OpenMPI.

Download Datasets & Model Checkpoints

By default, ARES would save datasets and model checkpoints under the ~/.ares directory. You could override it by setting the ARES_RES_DIR environment variable to an alternative location.

We support 2 datasets: CIFAR-10 and ImageNet.

To download the CIFAR-10 dataset, please run:

python3 ares/dataset/cifar10.py

To download the ImageNet dataset, please run:

python3 ares/dataset/imagenet.py

for instructions.

ARES includes third party models' code in the third_party/ directory as git submodules. Before you use these models, you need to initialize these submodules:

git submodule init
git submodule update --depth 1

The example/cifar10 directory and example/imagenet directories include wrappers for these models. Run the model's .py file to download its checkpoint or view instructions for downloading. For example, if you want to download the ResNet56 model's checkpoint, please run:

python3 example/cifar10/resnet56.py

Documentation

We provide API docs as well as tutorials at https://thu-ml-ares.rtfd.io/.

Quick Examples

ARES provides command line interface to run benchmarks. For example, to run distortion benchmark on ResNet56 model for CIFAR-10 dataset using CLI:

python3 -m ares.benchmark.distortion_cli --method mim --dataset cifar10 --offset 0 --count 1000 --output mim.npy example/cifar10/resnet56.py --distortion 0.1 --goal ut --distance-metric l_inf --batch-size 100 --iteration 10 --decay-factor 1.0 --logger

This command would find the minimal adversarial distortion achieved using the MIM attack with decay factor of 1.0 on the example/cifar10/resnet56.py model with L∞ distance and save the result to mim.npy.

For more examples and usages (e.g. how to define new models), please browse our documentation website mentioned before.

Acknowledgement

This work was supported by the National Key Research and Development Program of China, Beijing Academy of Artificial Intelligence (BAAI), a grant from Tsinghua Institute for Guo Qiang.

Owner
Tsinghua Machine Learning Group
Tsinghua Machine Learning Group
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
PyTorch Implementation of Sparse DETR

Sparse DETR By Byungseok Roh*, Jaewoong Shin*, Wuhyun Shin*, and Saehoon Kim at Kakao Brain. (*: Equal contribution) This repository is an official im

Kakao Brain 113 Dec 28, 2022
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022
NR-GAN: Noise Robust Generative Adversarial Networks

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

Takuhiro Kaneko 59 Dec 11, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2

Graph Transformer - Pytorch Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2. This was recently used by bot

Phil Wang 97 Dec 28, 2022
Subdivision-based Mesh Convolutional Networks

Subdivision-based Mesh Convolutional Networks The official implementation of SubdivNet in our paper, Subdivion-based Mesh Convolutional Networks Requi

Zheng-Ning Liu 181 Dec 28, 2022
SEJE Pytorch implementation

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis.

AITom Introduction AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis. AITom is originated from the tomominer l

93 Jan 02, 2023
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022
ADOP: Approximate Differentiable One-Pixel Point Rendering

ADOP: Approximate Differentiable One-Pixel Point Rendering Abstract: We present a novel point-based, differentiable neural rendering pipeline for scen

Darius Rückert 1.9k Jan 06, 2023
TyXe: Pyro-based BNNs for Pytorch users

TyXe: Pyro-based BNNs for Pytorch users TyXe aims to simplify the process of turning Pytorch neural networks into Bayesian neural networks by leveragi

87 Jan 03, 2023
PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

PyDeepFakeDet An integrated and scalable library for Deepfake detection research. Introduction PyDeepFakeDet is an integrated and scalable Deepfake de

Junke, Wang 49 Dec 11, 2022
Source-to-Source Debuggable Derivatives in Pure Python

Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b

Google 2.2k Jan 01, 2023
Yolov5 + Deep Sort with PyTorch

딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021
Code for the USENIX 2017 paper: kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels Blazing fast x86-64 VM kernel fuzzing framework with performant VM reloads for Linux, MacOS an

Chair for Sys­tems Se­cu­ri­ty 541 Nov 27, 2022