This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Detection in Summarization

Related tags

Deep Learningsummac
Overview

SummaC: Summary Consistency Detection

This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Detection in Summarization

We release: (1) the trained SummaC models, (2) the SummaC Benchmark and data loaders, (3) training and evaluation scripts.

Trained SummaC Models

The two trained models SummaC-ZS and SummaC-Conv are implemented in model_summac.py (link):

  • SummaC-ZS does not require a model file (as the model is zero-shot and not trained): it can be used as seen at the bottom of the model_summac.py.
  • SummaC-Conv requires a start_file which contains the trained weight for the convolution layer. The default start_file used to compute results is available in this repository ( summac_conv_vitc_sent_perc_e.bin download link).

Example use

from model_summac import SummaCZS

model = SummaCZS(granularity="sentence", model_name="vitc")

document = """Scientists are studying Mars to learn about the Red Planet and find landing sites for future missions.
One possible site, known as Arcadia Planitia, is covered instrange sinuous features.
The shapes could be signs that the area is actually made of glaciers, which are large masses of slow-moving ice.
Arcadia Planitia is in Mars' northern lowlands."""

summary1 = "There are strange shape patterns on Arcadia Planitia. The shapes could indicate the area might be made of glaciers. This makes Arcadia Planitia ideal for future missions."
summary2 = "There are strange shape patterns on Arcadia Planitia. The shapes could indicate the area might be made of glaciers."

score1 = model.score([document], [summary1])
print("Summary Score 1 consistency: %.3f" % (score1["scores"][0])) # Prints: 0.587

score2 = model.score([document], [summary2])
print("Summary Score 2 consistency: %.3f" % (score2["scores"][0])) # Prints: 0.877

To load all the necessary files: (1) clone this repository, (2) add the reposity to Python path: export PYTHONPATH="${PYTHONPATH}:/path/to/summac/"

SummaC Benchmark

The SummaC Benchmark consists of 6 summary consistency datasets that have been standardized to a binary classification task. The datasets included are:


% Positive is the percentage of positive (consistent) summaries. IAA is the inter-annotator agreement (Fleiss Kappa). Source is the dataset used for the source documents (CNN/DM or XSum). # Summarizers is the number of summarizers (extractive and abstractive) included in the dataset. # Sublabel is the number of labels in the typology used to label summary errors.

The data-loaders for the benchmark are included in utils_summac_benchmark.py (link). Because the dataset relies on previously published work, the dataset requires the manual download of several datasets. For each of the 6 tasks, the link and instruction to download are present as a comment in the file. Once all the files have been compiled, the benchmark can be loaded and standardized by running:

from utils_summac_benchmark import SummaCBenchmark
benchmark_validation = SummaCBenchmark(benchmark_folder="/path/to/summac_benchmark/", cut="val")

Note: we have a plan to streamline the process by further improving to automatically download necessary files if not present, if you would like to participate please let us know. If encoutering an issue in the manual download process, please contact us.

Cite the work

If you make use of the code, models, or algorithm, please cite our paper. Bibtex to come.

Contributing

If you'd like to contribute, or have questions or suggestions, you can contact us at [email protected]. All contributions welcome, for example helping make the benchmark more easily downloadable, or improving model performance on the benchmark.

Owner
Philippe Laban
Philippe Laban
DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
Zero-shot Learning by Generating Task-specific Adapters

Code for "Zero-shot Learning by Generating Task-specific Adapters" This is the repository containing code for "Zero-shot Learning by Generating Task-s

INK Lab @ USC 11 Dec 17, 2021
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
Pytorch version of SfmLearner from Tinghui Zhou et al.

SfMLearner Pytorch version This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghu

Clément Pinard 909 Dec 22, 2022
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
discovering subdomains, hidden paths, extracting unique links

python-website-crawler discovering subdomains, hidden paths, extracting unique links pip install -r requirements.txt discover subdomain: You can give

merve 4 Sep 05, 2022
Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides

Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides Project | This repo is the officia

CVSM Group - email: <a href=[email protected]"> 33 Dec 28, 2022
Python package to generate image embeddings with CLIP without PyTorch/TensorFlow

imgbeddings A Python package to generate embedding vectors from images, using OpenAI's robust CLIP model via Hugging Face transformers. These image em

Max Woolf 81 Jan 04, 2023
A motion detection system with RaspberryPi, OpenCV, Python

Human Detection System using Raspberry Pi Functionality Activates a relay on detecting motion. You may need following components to get the expected R

Omal Perera 55 Dec 04, 2022
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
Source code for the paper "SEPP: Similarity Estimation of Predicted Probabilities for Defending and Detecting Adversarial Text" PACLIC 2021

Adversarial text generator Refer to "adversarial_text_generator"[https://github.com/quocnsh/SEPP_generator] project for generating adversarial texts A

0 Oct 05, 2021
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
Neural Cellular Automata + CLIP

🧠 Text-2-Cellular Automata Using Neural Cellular Automata + OpenAI CLIP (Work in progress) Examples Text Prompt: Cthulu is watching cthulu_is_watchin

Mainak Deb 21 Dec 19, 2022
OBBDetection is a oriented object detection library, which is based on MMdetection.

OBBDetection news: We are now updating OBBDetection to new vision based on MMdetection v2.10, which has more advanced models and more efficient featur

jbwang1997 401 Jan 02, 2023
Voice assistant - Voice assistant with python

🌐 Python Voice Assistant 🌵 - User's greeting 🌵 - Writing tasks to todo-list ?

PythonToday 10 Dec 26, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

49 Nov 23, 2022
The official repository for BaMBNet

BaMBNet-Pytorch Paper

Junjun Jiang 18 Dec 04, 2022