PyTorch implementation of the TTC algorithm

Overview

Trust-the-Critics

This repository is a PyTorch implementation of the TTC algorithm and the WGAN misalignment experiments presented in Trust the Critics: Generatorless and Multipurpose WGANs with Initial Convergence Guarantees.

How to run this code

  • Create a Python virtual environment with Python 3.8 installed.
  • Install the necessary Python packages listed in the requirements.txt file (this can be done through pip install -r /path/to/requirements.txt).

In the example_shell_scripts folder, we include samples of shell scripts we used to run our experiments. We note that training generative models is computationally demanding, and thus requires adequate computational resources (i.e. running this on your laptop is not recommended).

TTC algorithm

The various experiments we run with TTC are described in Section 5 and Addendix B of the paper. Illustrating the flexibility of the TTC algorithm, the image generation, denoising and translation experiments can all be run using the ttc.py script; the only necessary changes are the source and target datasets. Running TTC with a given source and a given target will train and save several critic neural networks that can subsequently be used to push the source distribution towards the target distribution by applying the 'steptaker' function found in TTC_utils/steptaker.py once for each critic.

Necessary arguments for ttc.py are:

  • 'source' : The name of the distribution or dataset that is to be pushed towards the target (options are listed in ttc.py).
  • 'target' : The name of the target dataset (options are listed in ttc.py).
  • 'data' : The path of a directory where the necessary data is located. This includes the target dataset, in a format that can be accessed by a dataloader object obtained from the corresponding function in dataloader.py. Such a dataloader always belongs to the torch.utils.data.DataLoader class (e.g. if target=='mnist', then the corresponding dataloader will be an instance of torchvision.datasets.MNIST, and the MNIST dataset should be placed in 'data' in a way that reflects this). If the source is a dataset, it needs to be placed in 'data' as well. If source=='untrained_gen', then the untrained generator used to create the source distribution needs to be saved under 'data/ugen.pth'.
  • 'temp_dir' : The path of a directory where the trained critics will be saved, along with a few other files (including the log.pkl file that contains the step sizes). Despite the name, this folder isn't necessarily temporary.

Other optional arguments are described in a commented section at the top of the ttc.py script. Note that running ttc.py will only train the critics that the TTC algorithm uses to push the source distribution towards the target distribution, it will not actually push any samples from the source towards the target (as mentioned above, this is done using the steptaker function).

TTC image generation
For a generative experiment, run ttc.py with the source argument set to either 'noise' or 'untrained_gen' and the target of your choice. Then, run ttc_eval.py, which will use the saved critics and step sizes to push noise inputs towards the target distribution according to the TTC algorithm (using the steptaker function), and which will optionally evaluate generative performance with FID and/or MMD (FID is used in the paper). The arguments 'source', 'target', 'data', 'temp_dir' and 'model' for ttc_eval.py should be set to the same values as when running ttc.py. If evaluating FID, the folder specified by 'temp_dir' should contain a subdirectory named 'temp_dir/{target}test' (e.g. 'temp_dir/mnisttest' if target=='mnist') containing the test data from the target dataset saved as individual files. For instance, this folder could contain files of the form '00001.jpg', '00002.jpg', etc. (although extensions other than .jpg can be used).

TTC denoising
For a denoising experiment, run ttc.py with source=='noisybsds500' and target=='bsds500' (specifying a noise level with the 'sigma' argument). Then, run denoise_eval.py (with the same 'temp_dir', 'data' and 'model' arguments), which will add noise to images, denoise them using the TTC algorithm and the saved critics, and evaluate PSNR's.

TTC Monet translation
For a denoising experiment, run ttc.py with source=='photo' and target=='monet'. Then run ttc_eval.py (with the same 'source', 'target', 'temp_dir', 'data' and 'model' arguments, and presumably with no FID or MMD evaluation), which will sample realistic images from the source and make them look like Monet paintings.

WGAN misalignment

The WGAN misalignment experiments are described in Section 3 and Appendix B.1 of the paper, and are run using misalignments.py. This script trains a WGAN while, at some iterations, measuring how misaligned the movement of generated samples caused by updating the generator is from the critic's gradient. The generator's FID is also measured at the same iterations.

The required arguments for misalignments.py are:

  • 'target' : The dataset used to train the WGAN - can be either 'mnist' or 'fashion' (for Fashion-MNIST).
  • 'data' : The path of a folder where the MNIST (or Fashion-MNIST) dataset is located, in a format that can be accessed by an instance of the torchvision.datasets.MNIST class (resp torchvision.datasets.FashionMNIST).
  • 'fid_data' : The path of a folder containing the test data from the MNIST dataset saved as individual files. For instance, this folder could contain files of the form '00001.jpg', '00002.jpg', etc. (although extensions other than .jpg can be used).
  • 'checkpoints' : A string of integers separated by underscores. The integers specify the iterations at which misalignments and FID are computed, and training will continue until the largest iteration is reached.

Other optional arguments (including 'results_path' and 'temp_dir') are described in a commented section at the top of the misalignments.py. The misalignment results reported in the paper (Tables 1 and 5, and Figure 3), correspond to using the default hyperparameters and to setting the 'checkpoints' argument roughly equal to '10_25000_40000', with '10' corresponding the early stage in training, '25000' to the mid stage, and '40000' to the late stage.

WGAN generation

For completeness we include the code that was used to obtain the WGAN FID statistics in Table 3 of the paper, which includes the wgan_gp.py and wgan_gp_eval.py scripts. The former trains a WGAN with the InfoGAN architecture on the dataset specified by the 'target' argument, saving generator model dictionaries in the folder specified by 'temp_dir' at ten equally spaced stages in training. The wgan_gp_eval.py script evaluates the performance of the generator with the different model dictionaries in 'temp_dir'.

The necessary arguments to run wgan_gp.py are:

  • 'target' : The name of the dataset to generate (can be either 'mnist', 'fashion' or 'cifar10').
  • 'data' : Folder where the dataset is located.
  • 'temp_dir' : Folder where the model dictionaries are saved.

Once wgan_gp.py has run, wgan_gp_eval.py should be called with the same arguments for 'target', 'data' and 'temp_dir', and setting the 'model' argument to 'infogan'. If evaluating FID, the 'temp_dir' folder needs to contain the test data from the target dataset saved as individual files. For instance, this folder could contain files of the form '00001.jpg', '00002.jpg', etc. (although extensions other than .jpg can be used).

Reproducibility

This repository contains two branches: 'main' and 'reproducible'. You are currectly viewing the 'main' branch, which contains a clean version of the code meant to be easy to read and interpret and to run more efficiently than the version on the 'reproducible' branch. The results obtained by running the code on this branch should be nearly (but not perfectly) identical to the results stated in the papers, the differences stemming from the randomness inherent to the experiments. The 'reproducible' branch allows one to replicate exactly the results stated in the paper (random seeds are specified) for the TTC experiments.

Computing architecture and running times

We ran different versions of the code presented here on Compute Canada (https://www.computecanada.ca/) clusters, always using a single NVIDIA V100 Volta or NVIDIA A100 Ampere GPU. Here are rough estimations of the running times for our experiments.

  • MNIST/Fashion MNIST generation training run (TTC): 60-90 minutes.
  • MNIST/Fashion MNIST generation training run (WGAN): 45-90 minutes (this includes misalignments computations).
  • CIFAR10 generation training run: 3-4 hours (TTC), 90 minutes (WGAN-GP).
  • Image translation training run: up to 20 hours.
  • Image denoising training run: 8-10 hours.

Assets

Portions of this code, as well as the datasets used to produce our experimental results, make use of existing assets. We provide here a list of all assets used, along with the licenses under which they are distributed, if specified by the originator:

Official Python implementation of the FuzionCoin protocol

PyFuzc Official Python implementation of the FuzionCoin protocol WARNING: Under construction. Use at your own risk. Some functions may not work. Setup

FuzionCoin 3 Jul 07, 2022
Companion repository to the paper accepted at the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities

Transfer learning approach to bicycle sharing systems station location planning using OpenStreetMap Companion repository to the paper accepted at the

Politechnika Wrocławska - repozytorium dla informatyków 4 Oct 24, 2022
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

Chuanxia Zheng 615 Dec 08, 2022
This repository contains code released by Google Research.

This repository contains code released by Google Research.

Google Research 26.6k Dec 31, 2022
Benchmarks for Object Detection in Aerial Images

Benchmarks for Object Detection in Aerial Images

Jian Ding 691 Dec 30, 2022
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

880 Jan 07, 2023
piSTAR Lab is a modular platform built to make AI experimentation accessible and fun. (pistar.ai)

piSTAR Lab WARNING: This is an early release. Overview piSTAR Lab is a modular deep reinforcement learning platform built to make AI experimentation a

piSTAR Lab 0 Aug 01, 2022
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021).

AA-RMVSNet Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021) in PyTorch. paper link: arXiv | CVF Change Log Ju

Qingtian Zhu 97 Dec 30, 2022
A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series.

TimeMatch Official source code of TimeMatch: Unsupervised Cross-region Adaptation by Temporal Shift Estimation by Joachim Nyborg, Charlotte Pelletier,

Joachim Nyborg 17 Nov 01, 2022
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023
Spectralformer: Rethinking hyperspectral image classification with transformers

The code in this toolbox implements the "Spectralformer: Rethinking hyperspectral image classification with transformers". More specifically, it is detailed as follow.

Danfeng Hong 104 Jan 04, 2023
code for EMNLP 2019 paper Text Summarization with Pretrained Encoders

PreSumm This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swit

Yang Liu 1.2k Dec 28, 2022
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
The official homepage of the COCO-Stuff dataset.

The COCO-Stuff dataset Holger Caesar, Jasper Uijlings, Vittorio Ferrari Welcome to official homepage of the COCO-Stuff [1] dataset. COCO-Stuff augment

Holger Caesar 715 Dec 31, 2022
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification

Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification Usage The required packages are lis

0 Feb 07, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation [arxiv] This is the official repository for CDTrans: Cross-domain Transformer for

238 Dec 22, 2022