Open-source implementation of Google Vizier for hyper parameters tuning

Overview

Advisor

Introduction

Advisor is the hyper parameters tuning system for black box optimization.

It is the open-source implementation of Google Vizier with these features.

  • Easy to use with API, SDK, WEB and CLI
  • Support abstractions of Study and Trial
  • Included search and early stop algorithms
  • Recommend parameters with trained model
  • Same programming interfaces as Google Vizier
  • Command-line tool just like Microsoft NNI.

Supported Algorithms

  • Grid Search
  • Random Search
  • Bayesian Optimization
  • TPE(Hyperopt)
  • Random Search(Hyperopt)
  • Simulate Anneal(Hyperopt)
  • Quasi Random(Chocolate)
  • Grid Search(Chocolate)
  • Random Search(Chocolate)
  • Bayes(Chocolate)
  • CMAES(Chocolate)
  • MOCMAES(Chocolate)
  • SMAC Algorithm
  • Bayesian Optimization(Skopt)
  • Early Stop First Trial Algorithm
  • Early Stop Descending Algorithm
  • Performance Curve Stop Algorithm

Quick Start

It is easy to setup advisor service in local machine.

pip install advisor

advisor_admin server start

Then go to http://127.0.0.1:8000 in the browser and submit tuning jobs.

git clone --depth 1 https://github.com/tobegit3hub/advisor.git && cd ./advisor/

advisor run -f ./advisor_client/examples/python_function/config.json

advisor study describe -s demo

Advisor Server

Run server with official package.

advisor_admin server start

Or run with official docker image.

docker run -d -p 8000:8000 tobegit3hub/advisor

Or run with docker-compose.

wget https://raw.githubusercontent.com/tobegit3hub/advisor/master/docker-compose.yml

docker-compose up -d

Or run in Kubernetes cluster.

wget https://raw.githubusercontent.com/tobegit3hub/advisor/master/kubernetes_advisor.yaml

kubectl create -f ./kubernetes_advisor.yaml

Or run from scratch with source code.

git clone --depth 1 https://github.com/tobegit3hub/advisor.git && cd ./advisor/

pip install -r ./requirements.txt

./manage.py migrate

./manage.py runserver 0.0.0.0:8000

Advisor Client

Install with pip or use docker container.

pip install advisor

docker run -it --net=host tobegit3hub/advisor bash

Use the command-line tool.

export ADVISOR_ENDPOINT="http://127.0.0.1:8000"

advisor study list

advisor study describe -s "demo"

advisor trial list --study_name "demo"

Use admin tool to start/stop server.

advisor_admin server start

advisor_admin server stop

Use the Python SDK.

client = AdvisorClient()

# Create the study
study_configuration = {
        "goal": "MAXIMIZE",
        "params": [
                {
                        "parameterName": "hidden1",
                        "type": "INTEGER",
                        "minValue": 40,
                        "maxValue": 400,
                        "scalingType": "LINEAR"
                }
        ]
}
study = client.create_study("demo", study_configuration)

# Get suggested trials
trials = client.get_suggestions(study, 3)

# Complete the trial
trial = trials[0]
trial_metrics = 1.0
client.complete_trial(trial, trial_metrics)

Please checkout examples for more usage.

Configuration

Study configuration describe the search space of parameters. It supports four types and here is the example.

{
  "goal": "MAXIMIZE",
  "randomInitTrials": 1,
  "maxTrials": 5,
  "maxParallelTrials": 1,
  "params": [
    {
      "parameterName": "hidden1",
      "type": "INTEGER",
      "minValue": 1,
      "maxValue": 10,
      "scalingType": "LINEAR"
    },
    {
      "parameterName": "learning_rate",
      "type": "DOUBLE",
      "minValue": 0.01,
      "maxValue": 0.5,
      "scalingType": "LINEAR"
    },
    {
      "parameterName": "hidden2",
      "type": "DISCRETE",
      "feasiblePoints": "8, 16, 32, 64",
      "scalingType": "LINEAR"
    },
    {
      "parameterName": "optimizer",
      "type": "CATEGORICAL",
      "feasiblePoints": "sgd, adagrad, adam, ftrl",
      "scalingType": "LINEAR"
    },
    {
      "parameterName": "batch_normalization",
      "type": "CATEGORICAL",
      "feasiblePoints": "true, false",
      "scalingType": "LINEAR"
    }
  ]
}

Here is the configuration file in JSON format for advisor run.

{
  "name": "demo",
  "algorithm": "BayesianOptimization",
  "trialNumber": 10,
  "concurrency": 1,
  "path": "./advisor_client/examples/python_function/",
  "command": "./min_function.py",
  "search_space": {
      "goal": "MINIMIZE",
      "randomInitTrials": 3,
      "params": [
          {
              "parameterName": "x",
              "type": "DOUBLE",
              "minValue": -10.0,
              "maxValue": 10.0,
              "scalingType": "LINEAR"
          }
      ]
  }
}

Or use the equivalent configuration file in YAML format.

name: "demo"
algorithm: "BayesianOptimization"
trialNumber: 10
path: "./advisor_client/examples/python_function/"
command: "./min_function.py"
search_space:
  goal: "MINIMIZE"
  randomInitTrials: 3
  params:
    - parameterName: "x"
      type: "DOUBLE"
      minValue: -10.0
      maxValue: 10.0

Screenshots

List all the studies and create/delete the studies easily.

study_list.png

List the detail of study and all the related trials.

study_detail.png

List all the trials and create/delete the trials easily.

trial_list.png

List the detail of trial and all the related metrics.

trial_detail.png

Development

You can edit the source code and test without re-deploying the server and client.

git clone [email protected]:tobegit3hub/advisor.git

cd ./advisor/advisor_client/

python ./setup.py develop

export PYTHONPATH="/Library/Python/2.7/site-packages/:$PYTHONPATH"
Owner
tobe
Work in @Xiaomi, @UnitedStack and @4Paradigm for Storage(HBase), IaaS(OpenStack, Kubernetes), Big data(Spark, Flink) and Machine Learning(TensorFlow).
tobe
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The

FengZhang 34 Dec 04, 2022
Aspect-Sentiment-Multiple-Opinion Triplet Extraction (NLPCC 2021)

The code and data for the paper "Aspect-Sentiment-Multiple-Opinion Triplet Extraction" Requirements Python 3.6.8 torch==1.2.0 pytorch-transformers==1.

慢半拍 5 Jul 02, 2022
Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Implicit3DUnderstanding (Im3D) [Project Page] Holistic 3D Scene Understanding from a Single Image with Implicit Representation Cheng Zhang, Zhaopeng C

Cheng Zhang 149 Jan 08, 2023
Using machine learning to predict undergrad college admissions.

College-Prediction Project- Overview: Many have tried, many have failed. Few trailblazers are ambitious enought to chase acceptance into the top 15 un

John H Klinges 1 Jan 05, 2022
This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)".

HeadNeRF: A Real-time NeRF-based Parametric Head Model This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametr

294 Jan 01, 2023
Original Implementation of Prompt Tuning from Lester, et al, 2021

Prompt Tuning This is the code to reproduce the experiments from the EMNLP 2021 paper "The Power of Scale for Parameter-Efficient Prompt Tuning" (Lest

Google Research 282 Dec 28, 2022
The code used for the free [email protected] Webinar series on Reinforcement Learning in Finance

Reinforcement Learning in Finance [email protected] Webinar This repository provides the code f

Yves Hilpisch 62 Dec 22, 2022
FLVIS: Feedback Loop Based Visual Initial SLAM

FLVIS Feedback Loop Based Visual Inertial SLAM 1-Video EuRoC DataSet MH_05 Handheld Test in Lab FlVIS on UAV Platform 2-Relevent Publication: Under Re

UAV Lab - HKPolyU 182 Dec 04, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
Pansharpening by convolutional neural networks in the full resolution framework

Z-PNN: Zoom Pansharpening Neural Network Pansharpening by convolutional neural networks in the full resolution framework is a deep learning method for

20 Nov 24, 2022
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
A TikTok-like recommender system for GitHub repositories based on Gorse

GitRec GitRec is the missing recommender system for GitHub repositories based on Gorse. Architecture The trending crawler crawls trending repositories

337 Jan 04, 2023
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
Behavioral "black-box" testing for recommender systems

RecList RecList Free software: MIT license Documentation: https://reclist.readthedocs.io. Overview RecList is an open source library providing behavio

Jacopo Tagliabue 375 Dec 30, 2022
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces

This repository contains source code for the paper Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces a

9 Nov 21, 2022
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
pytorch implementation of dftd2 & dftd3

torch-dftd pytorch implementation of dftd2 [1] & dftd3 [2, 3] Install # Install from pypi pip install torch-dftd # Install from source (for developer

33 Nov 28, 2022
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Chainer 5.8k Jan 06, 2023
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022