Few-shot Learning of GPT-3

Overview

Few-shot Learning With Language Models

This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper. In particular, a few training examples are placed into a natural language "prompt" and predictions are made by generating from the language model. See the GPT-3 paper and Calibrate Before Use for more information.

You can run this codebase with GPT-3 (if you have a key from OpenAI), GPT-2, and any other language model available in HuggingFace Transformers. If you have a GPT-3 key, you should place your API key into a file named openai_key.txt. The underlying model you use is abstracted away using a common API.

Running this codebase will report results with and without contextual calibration.

Dependencies

This code is written using PyTorch and HuggingFace's Transformer repo. If you are running a model locally (e.g., GPT-2), the code requires a single GPU. Running these experiments is relatively lightweight (there is no training), so a single GPU is sufficient. It is technically possible to run the experiments without a GPU, but the runtime will be slow.

Installation

The easiest way to install the code is to create a fresh anaconda environment:

conda create -n fewshot python=3.6
source activate fewshot
pip install -r requirements.txt

Now you should be ready to go!

Replicating Our Results

Here is how to replicate the results from our paper for GPT-2. To replicate the results for classification tasks:

CUDA_VISIBLE_DEVICES=0 python run_classification.py \
--model="gpt2-xl" \
--dataset="sst2, trec, cb, agnews, dbpedia" \
--num_seeds=5 \
--all_shots="0, 1, 4, 8" \
--subsample_test_set=300 \
--approx

To replicate the results for extraction tasks:

CUDA_VISIBLE_DEVICES=0 python run_extraction.py \
--model="gpt2-xl" \
--dataset="mit_movie_Genre, mit_movie_Director, atis_airline_name, atis_depart_date.day_name" \
--num_seeds=5 \
--all_shots="0, 1, 4, 8" \
--subsample_test_set=300

To replicate the results for LAMA:

CUDA_VISIBLE_DEVICES=0 python run_lama.py

Note that after we refactored our code, the training sets are not the same ones used in our results table. We expect the results to differ slightly but they should match the same trends seen in our results.

Overview of Codebase

Data

The data folder contains the raw data for numerous tasks. If you'd like to add your own task, add the data into that folder. The code for loading a dataset, as well as defining the prompt format for a task, is in utils/data_utils.py. We have loaders for a wide range of existing datasets. If you want to add a new dataset that is similar in structure to any of the existing datasets (e.g., its text classification) adding it should be very simple---you can use an existing dataset as a guide.

Utils

The utils folder contains all of the code for calling the underlying models, getting the probabilities of each label token, possibly applying contextual calibration, and more. If you just want to evaluate few-shot learning on your task, you should not need to modify this code. If you want to extend our code (e.g., modify how decisions are made) this is the place to look.

Run Scripts

The run scripts, e.g., run_classification.py, contain the code for randomly sampling the examples to use in the prompt, calling the models, the necessary evaluation metrics, and more. If you are adding a new task format (one that is not classification, QA) then you will need to write your own run script. Inside the run script, you can set the parameters for the experiments using the command line arguments.

For all experiments, we save and pickle the outputs of the model. This makes doing a post-hoc analysis of the accuracy / plotting results / etc. very fast. You can also use the saved outputs to evaluate how the accuracy would have changed if a different decision making function was used (e.g., accuracy with and without contextual calibration).

References

Please consider citing our work if you found this code or our paper beneficial to your research.

@article{Zhao2021Calibrate,	
  Author = {Tony Z. Zhao and Eric Wallace and Shi Feng and Dan Klein and Sameer Singh},	
  Journal={arXiv preprint arXiv:2102.09690},	
  Year = {2021},	
  Title = {Calibrate Before Use: Improving Few-shot Performance of Language Models}	
}    	

Contributions and Contact

This code was developed by Tony Z. Zhao and Eric Wallace, contact available at [email protected] and [email protected].

If you'd like to contribute code, feel free to open a pull request. If you find an issue, please open an issue.

Owner
Tony Z. Zhao
UC Berkeley EECS, working on robotics, NLP and ML
Tony Z. Zhao
Fast, accurate and reliable software for algebraic CT reconstruction

KCT CBCT Fast, accurate and reliable software for algebraic CT reconstruction. This set of software tools includes OpenCL implementation of modern CT

Vojtěch Kulvait 4 Dec 14, 2022
Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

youceF 1 Nov 12, 2021
Pytorch for Segmentation

Pytorch for Semantic Segmentation This repo has been deprecated currently and I will not maintain it. Meanwhile, I strongly recommend you can refer to

ycszen 411 Nov 22, 2022
PyTorch implementation of PP-LCNet

PP-LCNet-Pytorch Pre-Trained Models Google Drive p018 Accuracy Models Top1 Top5 PPLCNet_x0_25 0.5186 0.7565 PPLCNet_x0_35 0.5809 0.8083 PPLCNet_x0_5 0

24 Dec 12, 2022
An Implementation of SiameseRPN with Feature Pyramid Networks

SiameseRPN with FPN This project is mainly based on HelloRicky123/Siamese-RPN. What I've done is just add a Feature Pyramid Network method to the orig

3 Apr 16, 2022
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

Vowpal Wabbit 8.1k Jan 06, 2023
Underwater industrial application yolov5m6

This project wins the intelligent algorithm contest finalist award and stands out from over 2000teams in China Underwater Robot Professional Contest, entering the final of China Underwater Robot Prof

8 Nov 09, 2022
CS50's Introduction to Artificial Intelligence Test Scripts

CS50's Introduction to Artificial Intelligence Test Scripts 🤷‍♂️ What's this? 🤷‍♀️ This repository contains Python scripts to automate tests for mos

Jet Kan 2 Dec 28, 2022
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022
PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

MoCo v3 for Self-supervised ResNet and ViT Introduction This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT. The original M

Facebook Research 887 Jan 08, 2023
PyTorch implementation of ENet

PyTorch-ENet PyTorch (v1.1.0) implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from the lua-torc

David Silva 333 Dec 29, 2022
Code accompanying "Adaptive Methods for Aggregated Domain Generalization"

Adaptive Methods for Aggregated Domain Generalization (AdaClust) Official Pytorch Implementation of Adaptive Methods for Aggregated Domain Generalizat

Xavier Thomas 15 Sep 20, 2022
Source Code for Simulations in the Publication "Can the brain use waves to solve planning problems?"

Code for Simulations in the Publication Can the brain use waves to solve planning problems? Installing Required Python Packages Please use Python vers

EMD Group 2 Jul 01, 2022
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

BUPT GAMMA Lab 519 Jan 02, 2023
MusicYOLO framework uses the object detection model, YOLOx, to locate notes in the spectrogram.

MusicYOLO MusicYOLO framework uses the object detection model, YOLOX, to locate notes in the spectrogram. Its performance on the ISMIR2014 dataset, MI

Xianke Wang 2 Aug 02, 2022
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

OW-DETR: Open-world Detection Transformer (CVPR 2022) [Paper] Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Sh

Akshita Gupta 127 Dec 27, 2022