Distributed Computing for AI Made Simple

Overview

build

drawing

Project Home   Blog   Documents   Paper   Media Coverage

Join Fiber users email list [email protected]

Fiber

Distributed Computing for AI Made Simple

This project is experimental and the APIs are not considered stable.

Fiber is a Python distributed computing library for modern computer clusters.

  • It is easy to use. Fiber allows you to write programs that run on a computer cluster level without the need to dive into the details of computer cluster.
  • It is easy to learn. Fiber provides the same API as Python's standard multiprocessing library that you are familiar with. If you know how to use multiprocessing, you can program a computer cluster with Fiber.
  • It is fast. Fiber's communication backbone is built on top of Nanomsg which is a high-performance asynchronous messaging library to allow fast and reliable communication.
  • It doesn't need deployment. You run it as the same way as running a normal application on a computer cluster and Fiber handles the rest for you.
  • It it reliable. Fiber has built-in error handling when you are running a pool of workers. Users can focus on writing the actual application code instead of dealing with crashed workers.

Originally, it was developed to power large scale parallel scientific computation projects like POET and it has been used to power similar projects within Uber.

Installation

pip install fiber

Check here for details.

Quick Start

Hello Fiber

To use Fiber, simply import it in your code and it works very similar to multiprocessing.

import fiber

if __name__ == '__main__':
    fiber.Process(target=print, args=('Hello, Fiber!',)).start()

Note that if __name__ == '__main__': is necessary because Fiber uses spawn method to start new processes. Check here for details.

Let's take look at another more complex example:

Estimating Pi

import fiber
import random

@fiber.meta(cpu=1)
def inside(p):
    x, y = random.random(), random.random()
    return x * x + y * y < 1

def main():
    NUM_SAMPLES = int(1e6)
    pool = fiber.Pool(processes=4)
    count = sum(pool.map(inside, range(0, NUM_SAMPLES)))
    print("Pi is roughly {}".format(4.0 * count / NUM_SAMPLES))

if __name__ == '__main__':
    main()

Fiber implements most of multiprocessing's API including Process, SimpleQueue, Pool, Pipe, Manager and it has its own extension to the multiprocessing's API to make it easy to compose large scale distributed applications. For the detailed API guild, check out here.

Running on a Kubernetes cluster

Fiber also has native support for computer clusters. To run the above example on Kubernetes, fiber provided a convenient command line tool to manage the workflow.

Assume you have a working docker environment locally and have finished configuring Google Cloud SDK. Both gcloud and kubectl are available locally. Then you can start by writing a Dockerfile which describes the running environment. An example Dockerfile looks like this:

# example.docker
FROM python:3.6-buster
ADD examples/pi_estimation.py /root/pi_estimation.py
RUN pip install fiber

Build an image and launch your job

fiber run -a python3 /root/pi_estimation.py

This command will look for local Dockerfile and build a docker image and push it to your Google Container Registry . It then launches the main job which contains your code and runs the command python3 /root/pi_estimation.py inside your job. Once the main job is running, it will start 4 subsequent jobs on the cluster and each of them is a Pool worker.

Supported platforms

  • Operating system: Linux
  • Python: 3.6+
  • Supported cluster management systems:
    • Kubernetes (Tested with Google Kubernetes Engine on Google cloud)

We are interested in supporting other cluster management systems like Slurm, if you want to contribute to it please let us know.

Check here for details.

Documentation

The documentation, including method/API references, can be found here.

Testing

Install test dependencies. You'll also need to make sure docker is available on the testing machine.

$ pip install -e .[test]

Run tests

$ make test

Contributing

Please read our code of conduct before you contribute! You can find details for submitting pull requests in the CONTRIBUTING.md file. Issue template.

Versioning

We document versions and changes in our changelog - see the CHANGELOG.md file for details.

License

This project is licensed under the Apache 2.0 License - see the LICENSE file for details.

Cite Fiber

@misc{zhi2020fiber,
    title={Fiber: A Platform for Efficient Development and Distributed Training for Reinforcement Learning and Population-Based Methods},
    author={Jiale Zhi and Rui Wang and Jeff Clune and Kenneth O. Stanley},
    year={2020},
    eprint={2003.11164},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

Acknowledgments

  • Special thanks to Piero Molino for designing the logo for Fiber
Owner
Uber Open Source
Open Source Software at Uber
Uber Open Source
All-in-one web-based development environment for machine learning

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

3 Feb 03, 2021
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Scikit-Garden or skgarden is a garden for Scikit-Learn compatible decision trees and forests.

Scikit-Garden or skgarden (pronounced as skarden) is a garden for Scikit-Learn compatible decision trees and forests.

260 Dec 21, 2022
A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching.

A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching. The solver will solve equations of the type: A can be

Sanjeet N. Dasharath 3 Feb 15, 2022
The Simpsons and Machine Learning: What makes an Episode Great?

The Simpsons and Machine Learning: What makes an Episode Great? Check out my Medium article on this! PROBLEM: The Simpsons has had a decline in qualit

1 Nov 02, 2021
Python package for stacking (machine learning technique)

vecstack Python package for stacking (stacked generalization) featuring lightweight functional API and fully compatible scikit-learn API Convenient wa

Igor Ivanov 671 Dec 25, 2022
Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Projeto: Machine Learning: Linguagens de Programacao 2004-2001 Projeto de Data Science e Machine Learning de análise de linguagens de programação de 2

Victor Hugo Negrisoli 0 Jun 29, 2021
Python package for concise, transparent, and accurate predictive modeling

Python package for concise, transparent, and accurate predictive modeling. All sklearn-compatible and easy to use. 📚 docs • 📖 demo notebooks Modern

Chandan Singh 983 Jan 01, 2023
onelearn: Online learning in Python

onelearn: Online learning in Python Documentation | Reproduce experiments | onelearn stands for ONE-shot LEARNning. It is a small python package for o

15 Nov 06, 2022
Predict the output which should give a fair idea about the chances of admission for a student for a particular university

Predict the output which should give a fair idea about the chances of admission for a student for a particular university.

ArvindSandhu 1 Jan 11, 2022
Katana project is a template for ASAP 🚀 ML application deployment

Katana project is a FastAPI template for ASAP 🚀 ML API deployment

Mohammad Shahebaz 100 Dec 26, 2022
A Tools that help Data Scientists and ML engineers train and deploy ML models.

Domino Research This repo contains projects under active development by the Domino R&D team. We build tools that help Data Scientists and ML engineers

Domino Data Lab 73 Oct 17, 2022
Time-series momentum for momentum investing strategy

Time-series-momentum Time-series momentum strategy. You can use the data_analysis.py file to find out the best trigger and window for a given asset an

Victor Caldeira 3 Jun 18, 2022
A Python implementation of GRAIL, a generic framework to learn compact time series representations.

GRAIL A Python implementation of GRAIL, a generic framework to learn compact time series representations. Requirements Python 3.6+ numpy scipy tslearn

3 Nov 24, 2021
Apache Spark & Python (pySpark) tutorials for Big Data Analysis and Machine Learning as IPython / Jupyter notebooks

Spark Python Notebooks This is a collection of IPython notebook/Jupyter notebooks intended to train the reader on different Apache Spark concepts, fro

Jose A Dianes 1.5k Jan 02, 2023
Forecasting prices using Facebook/Meta's Prophet model

CryptoForecasting using Machine and Deep learning (Part 1) CryptoForecasting using Machine Learning The main aspect of predicting the stock-related da

1 Nov 27, 2021
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 648 Dec 16, 2022
AtsPy: Automated Time Series Models in Python (by @firmai)

Automated Time Series Models in Python (AtsPy) SSRN Report Easily develop state of the art time series models to forecast univariate data series. Simp

Derek Snow 465 Jan 02, 2023
stability-selection - A scikit-learn compatible implementation of stability selection

stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability

185 Dec 03, 2022
Bayesian optimization in JAX

Bayesian optimization in JAX

Predictive Intelligence Lab 26 May 11, 2022