Unofficial implementation of HiFi-GAN+ from the paper "Bandwidth Extension is All You Need" by Su, et al.

Overview

HiFi-GAN+

This project is an unoffical implementation of the HiFi-GAN+ model for audio bandwidth extension, from the paper Bandwidth Extension is All You Need by Jiaqi Su, Yunyun Wang, Adam Finkelstein, and Zeyu Jin.

The model takes a band-limited audio signal (usually 8/16/24kHz) and attempts to reconstruct the high frequency components needed to restore a full-band signal at 48kHz. This is useful for upsampling low-rate outputs from upstream tasks like text-to-speech, voice conversion, etc. or enhancing audio that was filtered to remove high frequency noise. For more information, please see this blog post.

Status

PyPI Tests Coveralls DOI

Wandb Gradio Colab

Usage

The example below uses a pretrained HiFi-GAN+ model to upsample a 1 second 24kHz sawtooth to 48kHz.

import torch
from hifi_gan_bwe import BandwidthExtender

model = BandwidthExtender.from_pretrained("hifi-gan-bwe-10-42890e3-vctk-48kHz")

fs = 24000
x = torch.full([fs], 261.63 / fs).cumsum(-1) % 1.0 - 0.5
y = model(x, fs)

There is a Gradio demo on HugggingFace Spaces where you can upload audio clips and run the model. You can also run the model on Colab with this notebook.

Running with pipx

The HiFi-GAN+ library can be run directly from PyPI if you have the pipx application installed. The following script uses a hosted pretrained model to upsample an MP3 file to 48kHz. The input audio can be in any format supported by the audioread library, and the output can be in any format supported by soundfile.

pipx run --python=python3.9 hifi-gan-bwe \
  hifi-gan-bwe-10-42890e3-vctk-48kHz \
  input.mp3 \
  output.wav

Running in a Virtual Environment

If you have a Python 3.9 virtual environment installed, you can install the HiFi-GAN+ library into it and run synthesis, training, etc. using it.

pip install hifi-gan-bwe

hifi-synth hifi-gan-bwe-10-42890e3-vctk-48kHz input.mp3 output.wav

Pretrained Models

The following models can be loaded with BandwidthExtender.from_pretrained and used for audio upsampling. You can also download the model file from the link and use it offline.

Name Sample Rate Parameters Wandb Metrics Notes
hifi-gan-bwe-10-42890e3-vctk-48kHz 48kHz 1M bwe-10-42890e3 Same as bwe-05, but uses bandlimited interpolation for upsampling, for reduced noise and aliasing. Uses the same parameters as resampy's kaiser_best mode.
hifi-gan-bwe-11-d5f542d-vctk-8kHz-48kHz 48kHz 1M bwe-11-d5f542d Same as bwe-10, but trained only on 8kHz sources, for specialized upsampling.
hifi-gan-bwe-12-b086d8b-vctk-16kHz-48kHz 48kHz 1M bwe-12-b086d8b Same as bwe-10, but trained only on 16kHz sources, for specialized upsampling.
hifi-gan-bwe-13-59f00ca-vctk-24kHz-48kHz 48kHz 1M bwe-13-59f00ca Same as bwe-10, but trained only on 24kHz sources, for specialized upsampling.
hifi-gan-bwe-05-cd9f4ca-vctk-48kHz 48kHz 1M bwe-05-cd9f4ca Trained for 200K iterations on the VCTK speech dataset with noise agumentation from the DNS Challenge dataset.

Training

If you want to train your own model, you can use any of the methods above to install/run the library or fork the repo and run the script commands locally. The following commands are supported:

Name Description
hifi-train Starts a new training run, pass in a name for the run.
hifi-clone Clone an existing training run at a given or the latest checkpoint.
hifi-export Optimize a model for inference and export it to a PyTorch model file (.pt).
hifi-synth Run model inference using a trained model on a source audio file.

For example, you might start a new training run called bwe-01 with the following command:

hifi-train 01

To train a model, you will first need to download the VCTK and DNS Challenge datasets. By default, these datasets are assumed to be in the ./data/vctk and ./data/dns directories. See train.py for how to specify your own training data directories. If you want to use a custom training dataset, you can implement a dataset wrapper in datasets.py.

The training scripts use wandb.ai for experiment tracking and visualization. Wandb metrics can be disabled by passing --no_wandb to the training script. All of my own experiment results are publicly available at wandb.ai/brentspell/hifi-gan-bwe.

Each training run is identified by a name and a git hash (ex: bwe-01-8abbca9). The git hash is used for simple experiment tracking, reproducibility, and model provenance. Using git to manage experiments also makes it easy to change model hyperparameters by simply changing the code, making a commit, and starting the training run. This is why there is no hyperparameter configuration file in the project, since I often end up having to change the code anyway to run interesting experiments.

Development

Setup

The following script creates a virtual environment using pyenv for the project and installs dependencies.

pyenv install 3.9.10
pyenv virtualenv 3.9.10 hifi-gan-bwe
pip install -r requirements.txt

If you want to run the hifi-* scripts described above in development, you can install the package locally:

pip install -e .

You can then run tests, etc. follows:

pytest --cov=hifi_gan_bwe
black .
isort --profile=black .
flake8 .
mypy .

These checks are also included in the pre-commit configuration for the project, so you can set them up to run automatically on commit by running

pre-commit install

Acknowledgements

The original research on the HiFi-GAN+ model is not my own, and all credit goes to the paper's authors. I also referred to kan-bayashi's excellent Parallel WaveGAN implementation, specifically the WaveNet module. If you use this code, please cite the original paper:

@inproceedings{su2021bandwidth,
  title={Bandwidth extension is all you need},
  author={Su, Jiaqi and Wang, Yunyun and Finkelstein, Adam and Jin, Zeyu},
  booktitle={ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={696--700},
  year={2021},
  organization={IEEE},
  url={https://doi.org/10.1109/ICASSP39728.2021.9413575},
}

License

Copyright © 2022 Brent M. Spell

Licensed under the MIT License (the "License"). You may not use this package except in compliance with the License. You may obtain a copy of the License at

https://opensource.org/licenses/MIT

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Owner
Brent M. Spell
Brent M. Spell
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

Katherine Crowson 53 Dec 29, 2022
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Phil Wang 259 Jan 04, 2023
Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Det

123 Jan 04, 2023
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters

CNN-Filter-DB An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters Paul Gavrikov, Janis Keuper Paper: htt

Paul Gavrikov 18 Dec 30, 2022
CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP

CLIP-GEN [简体中文][English] 本项目在萤火二号集群上用 PyTorch 实现了论文 《CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP》。 CLIP-GEN 是一个 Language-F

75 Dec 29, 2022
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the

morningstarwang 4 Dec 14, 2022
Compare neural networks by their feature similarity

PyTorch Model Compare A tiny package to compare two neural networks in PyTorch. There are many ways to compare two neural networks, but one robust and

Anand Krishnamoorthy 181 Jan 04, 2023
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022
Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners

DART Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners. Environment

ZJUNLP 83 Dec 27, 2022
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks This repository contains a TensorFlow implementation of "

Jingwei Zheng 5 Jan 08, 2023
3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos

3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos This repository contains the source code and dataset for the pa

54 Oct 09, 2022
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022
A Python module for parallel optimization of expensive black-box functions

blackbox: A Python module for parallel optimization of expensive black-box functions What is this? A minimalistic and easy-to-use Python module that e

Paul Knysh 426 Dec 08, 2022
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow

Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t

Rishit Dagli 84 Oct 15, 2022
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

Jiale Cao 28 Dec 13, 2022