Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Related tags

Deep Learninglfgp
Overview

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning

Trevor Ablett*, Bryan Chan*, Jonathan Kelly (*equal contribution)

Poster at Neurips 2021 Deep Reinforcement Learning Workshop

arXiv paper: https://arxiv.org/abs/2112.08932


Adversarial Imitation Learning (AIL) is a technique for learning from demonstrations that helps remedy the distribution shift problem that occurs with Behavioural Cloning. Empirically, we found that for manipulation tasks, off-policy AIL can suffer from inefficient or stagnated learning. In this work, we resolve this by enforcing exploration of a set of easy-to-define auxiliary tasks, in addition to a main task.

This repository contains the source code for reproducing our results.

Setup

We recommend the readers set up a virtual environment (e.g. virtualenv, conda, pyenv, etc.). Please also ensure to use Python 3.7 as we have not tested in any other Python versions. In the following, we assume the working directory is the directory containing this README:

.
├── lfgp_data/
├── rl_sandbox/
└── README.md

To install, simply clone and install with pip, which will automatically install all dependencies:

git clone [email protected]:utiasSTARS/lfgp.git && cd lfgp
pip install rl_sandbox

Environments

In this paper, we evaluated our method in the four environments listed below:

bring_0                  # bring blue block to blue zone
stack_0                  # stack blue block onto green block
insert_0                 # insert blue block into blue zone slot
unstack_stack_env_only_0 # remove green block from blue block, and stack blue block onto green block

Trained Models and Expert Data

The expert and trained lfgp models can be found at this google drive link. The zip file is 570MB. All of our generated expert data is included, but we only include single seeds of each trained model to reduce the size.

The Data Directory

This subsection provides the desired directory structure that we will be assuming for the remaining README. The unzipped lfgp_data directory follows the structure:

.
├── lfgp_data/
│   ├── expert_data/
│   │   ├── unstack_stack_env_only_0-expert_data/
│   │   │   ├── reset/
│   │   │   │   ├── 54000_steps/
│   │   │   │   └── 9000_steps/
│   │   │   └── play/
│   │   │       └── 9000_steps/
│   │   ├── stack_0-expert_data/
│   │   │   └── (same as unstack_stack_env_only_0-expert_data)/
│   │   ├── insert_0-expert_data/
│   │   │   └── (same as unstack_stack_env_only_0-expert_data)/
│   │   └── bring_0-expert_data/
│   │       └── (same as unstack_stack_env_only_0-expert_data)/
│   └── trained_models/
│       ├── experts/
│       │   ├── unstack_stack_env_only_0/
│       │   ├── stack_0/
│       │   ├── insert_0/
│       │   └── bring_0/
│       ├── unstack_stack_env_only_0/
│       │   ├── multitask_bc/
│       │   ├── lfgp_ns/
│       │   ├── lfgp/
│       │   ├── dac/
│       │   ├── bc_less_data/
│       │   └── bc/
│       ├── stack_0/
│       │   └── (same as unstack_stack_env_only_0)
│       ├── insert_0/
│       │   └── (same as unstack_stack_env_only_0)
│       └── bring_0/
│           └── (same as unstack_stack_env_only_0)
├── liegroups/
├── manipulator-learning/
├── rl_sandbox/
├── README.md
└── requirements.txt

Create Expert and Generate Expert Demonstrations

Readers can generate their own experts and expert demonstrations by executing the scripts in the rl_sandbox/rl_sandbox/examples/lfgp/experts directory. More specifically, create_expert.py and create_expert_data.py respectively train the expert and generate the expert demonstrations. We note that training the expert is time consuming and may take up to multiple days.

To create an expert, you can run the following command:

# Create a stack expert using SAC-X with seed 0. --gpu_buffer would store the replay buffer on the GPU.
# For more details, please use --help command for more options.
python rl_sandbox/rl_sandbox/examples/lfgp/experts/create_expert.py \
    --seed=0 \
    --main_task=stack_0 \
    --device=cuda \
    --gpu_buffer

A results directory will be generated. A tensorboard, an experiment setting, a training progress file, model checkpoints, and a buffer checkpoint will be created.

To generate play-based and reset-based expert data using a trained model, you can run the following commands:

# Generate play-based stack expert data with seed 1. The program halts when one of --num_episodes or --num_steps is satisfied.
# For more details, please use --help command for more options
python rl_sandbox/rl_sandbox/examples/lfgp/experts/create_expert_data.py \
--model_path=data/stack_0/expert/state_dict.pt \
--config_path=data/stack_0/expert/sacx_experiment_setting.pkl \
--save_path=./test_expert_data \
--num_episodes=10 \
--num_steps=1000 \
--seed=1 \
--render

# Generate reset-based stack expert data with seed 1. Note that --num_episodes will need to be scaled by number of tasks (i.e. num_episodes * num_tasks).
python rl_sandbox/rl_sandbox/examples/lfgp/experts/create_expert_data.py \
--model_path=data/stack_0/expert/state_dict.pt \
--config_path=data/stack_0/expert/sacx_experiment_setting.pkl \
--save_path=./test_expert_data \
--num_episodes=10 \
--num_steps=1000 \
--seed=1 \
--render \
--reset_between_intentions

The generated expert data will be stored under --save_path, in separate files int_0.gz, ..., int_{num_tasks - 1}.gz.

Training the Models with Imitation Learning

In the following, we assume the expert data is generated following the previous section and is stored under test_expert_data. The training scripts run_*.py are stored in rl_sandbox/rl_sandbox/examples/lfgp directory. There are five run scripts, each corresponding to a variant of the compared methods (except for behavioural cloning less data, since the change is only in the expert data). The runs will be saved in the same results directory mentioned previously. Note that the default hyperparameters specified in the scripts are listed on the appendix.

Behavioural Cloning (BC)

There are two scripts for single-task and multitask BC: run_bc.py and run_multitask_bc.py. You can run the following commands:

# Train single-task BC agent to stack with using reset-based data.
# NOTE: intention 2 is the main intention (i.e. stack intention). The main intention is indexed at 2 for all environments.
python rl_sandbox/rl_sandbox/examples/lfgp/run_bc.py \
--seed=0 \
--expert_path=test_expert_data/int_2.gz \
--main_task=stack_0 \
--render \
--device=cuda

# Train multitask BC agent to stack with using reset-based data.
python rl_sandbox/rl_sandbox/examples/lfgp/run_multitask_bc.py \
--seed=0 \
--expert_paths=test_expert_data/int_0.gz,\
test_expert_data/int_1.gz,\
test_expert_data/int_2.gz,\
test_expert_data/int_3.gz,\
test_expert_data/int_4.gz,\
test_expert_data/int_5.gz
--main_task=stack_0 \
--render \
--device=cuda

Adversarial Imitation learning (AIL)

There are three scripts for Discriminator-Actor-Critic (DAC), Learning from Guided Play (LfGP), and LfGP-NS (No Schedule): run_dac.py, run_lfgp.py, run_lfgp_ns.py. You can run the following commands:

# Train DAC agent to stack with using reset-based data.
python rl_sandbox/rl_sandbox/examples/lfgp/run_dac.py \
--seed=0 \
--expert_path=test_expert_data/int_2.gz \
--main_task=stack_0 \
--render \
--device=cuda

# Train LfGP agent to stack with using reset-based data.
python rl_sandbox/rl_sandbox/examples/lfgp/run_lfgp.py \
--seed=0 \
--expert_paths=test_expert_data/int_0.gz,\
test_expert_data/int_1.gz,\
test_expert_data/int_2.gz,\
test_expert_data/int_3.gz,\
test_expert_data/int_4.gz,\
test_expert_data/int_5.gz
--main_task=stack_0 \
--device=cuda \
--render

# Train LfGP-NS agent to stack with using reset-based data.
python rl_sandbox/rl_sandbox/examples/lfgp/run_lfgp_ns.py \
--seed=0 \
--expert_paths=test_expert_data/int_0.gz,\
test_expert_data/int_1.gz,\
test_expert_data/int_2.gz,\
test_expert_data/int_3.gz,\
test_expert_data/int_4.gz,\
test_expert_data/int_5.gz,\
test_expert_data/int_6.gz \
--main_task=stack_0 \
--device=cuda \
--render

Evaluating the Models

The readers may load up trained agents and evaluate them using the evaluate.py script under the rl_sandbox/rl_sandbox/examples/eval_tools directory. Currently, only the lfgp agent is supplied due to the space restrictions mentioned above.

# For single-task agents - DAC, BC
# To run single-task agent (e.g. BC)
python rl_sandbox/rl_sandbox/examples/eval_tools/evaluate.py \
--seed=1 \
--model_path=data/stack_0/il_agents/bc/state_dict.pt \
--config_path=data/stack_0/il_agents/bc/bc_experiment_setting.pkl \
--num_episodes=5 \
--intention=0 \
--render \
--device=cuda

# For multitask agents - SAC-X, LfGP, LfGP-NS, Multitask BC
# To run all intentions for multitask agents (e.g. SAC-X)
python rl_sandbox/rl_sandbox/examples/eval_tools/evaluate.py \
--seed=1 \
--model_path=data/stack_0/expert/state_dict.pt \
--config_path=data/stack_0/expert/sacx_experiment_setting.pkl \
--num_episodes=5 \
--intention=-1 \
--render \
--device=cuda

# To run only the main intention for multitask agents (e.g. LfGP)
python rl_sandbox/rl_sandbox/examples/eval_tools/evaluate.py \
--seed=1 \
--model_path=data/stack_0/il_agents/lfgp/state_dict.pt \
--config_path=data/stack_0/il_agents/lfgp/lfgp_experiment_setting.pkl \
--num_episodes=5 \
--intention=2 \
--render \
--device=cuda

Owner
STARS Laboratory
We are the Space and Terrestrial Autonomous Robotic Systems Laboratory at the University of Toronto
STARS Laboratory
unet for image segmentation

Implementation of deep learning framework -- Unet, using Keras The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Seg

zhixuhao 4.1k Dec 31, 2022
This repository contains the implementation of the HealthGen model, a generative model to synthesize realistic EHR time series data with missingness

HealthGen: Conditional EHR Time Series Generation This repository contains the implementation of the HealthGen model, a generative model to synthesize

0 Jan 20, 2022
A large-scale database for graph representation learning

A large-scale database for graph representation learning

Scott Freitas 29 Nov 25, 2022
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
An open-source outlier detection package by Getcontact Data Team

pyfbad The pyfbad library supports anomaly detection projects. An end-to-end anomaly detection application can be written using the source codes of th

Teknasyon Tech 41 Dec 27, 2022
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
Rethinking Portrait Matting with Privacy Preserving

Rethinking Portrait Matting with Privacy Preserving This is the official repository of the paper Rethinking Portrait Matting with Privacy Preserving.

184 Jan 03, 2023
Official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right"

Surface Form Competition This is the official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right" We p

Peter West 46 Dec 23, 2022
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"

Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin

9 Nov 01, 2022
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
September-Assistant - Open-source Windows Voice Assistant

September - Windows Assistant September is an open-source Windows personal assis

The Nithin Balaji 9 Nov 22, 2022
An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Luna Yue Huang 41 Oct 29, 2022
Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Tom-R.T.Kvalvaag 2 Dec 17, 2021
Discover hidden deepweb pages

DeepWeb Scapper Att: Demo version An simple script to scrappe deepweb to find pages. Will return if any of those exists and will save on a file. You s

Héber Júlio 77 Oct 02, 2022
Space Ship Simulator using python

FlyOver Basic space-ship simulator using python How to run? Just double click run.py What modules do i need? All modules that i currently using is bui

0 Oct 09, 2022
Reproducing code of hair style replacement method from Barbershorp.

Barbershorp Reproducing code of hair style replacement method from Barbershorp. Also reproduces II2S, an improved version of Image2StyleGAN. Requireme

1 Dec 24, 2021
TensorFlow implementation of the algorithm in the paper "Decoupled Low-light Image Enhancement"

Decoupled Low-light Image Enhancement Shijie Hao1,2*, Xu Han1,2, Yanrong Guo1,2 & Meng Wang1,2 1Key Laboratory of Knowledge Engineering with Big Data

17 Apr 25, 2022
Python script that allows you to automatically setup your Growtopia server.

AutoSetup Python script that allows you to automatically setup your Growtopia server. How To Use Firstly, install all the required modules that used i

Aspire 3 Mar 06, 2022
Pytorch implementation of MixNMatch

MixNMatch: Multifactor Disentanglement and Encoding for Conditional Image Generation [Paper] Yuheng Li, Krishna Kumar Singh, Utkarsh Ojha, Yong Jae Le

910 Dec 30, 2022
🐥A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI

PyTorch implementation of OpenAI's Finetuned Transformer Language Model This is a PyTorch implementation of the TensorFlow code provided with OpenAI's

Hugging Face 1.4k Jan 05, 2023