Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

Overview

Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

This is the code for the paper Solving Graph-based Public Good Games with Tree Search and Imitation Learning by Victor-Alexandru Darvariu, Stephen Hailes and Mirco Musolesi, presented at NeurIPS 2021. If you use this code, please consider citing:

@inproceedings{darvariu_solving_2021,
  title = {Solving Graph-based Public Good Games with Tree Search and Imitation Learning},
  author = {Darvariu, Victor-Alexandru and Hailes, Stephen and Musolesi, Mirco},
  booktitle = {35th Conference on Neural Information Processing Systems (NeurIPS 2021)},
  year={2021},
}

License

MIT.

Prerequisites

Currently tested on Linux and MacOS (specifically, CentOS 7.4.1708 and Mac OS Big Sur 11.2.3), can also be adapted to Windows through WSL. The host machine requires NVIDIA CUDA toolkit version 9.0 or above (tested with NVIDIA driver version 384.81).

Makes heavy use of Docker, see e.g. here for how to install. Tested with Docker 19.03. The use of Docker largely does away with dependency and setup headaches, making it significantly easier to reproduce the reported results.

Configuration

The Docker setup uses Unix groups to control permissions. You can reuse an existing group that you are a member of, or create a new group groupadd -g GID GNAME and add your user to it usermod -a -G GNAME MYUSERNAME.

Create a file relnet.env at the root of the project (see relnet_example.env) and adjust the paths within: this is where some data generated by the container will be stored. Also specify the group ID and name created / selected above.

Add the following lines to your .bashrc, replacing /home/john/git/relnet with the path where the repository is cloned.

export RN_SOURCE_DIR='/home/john/git/relnet'
set -a
. $RN_SOURCE_DIR/relnet.env
set +a

export PATH=$PATH:$RN_SOURCE_DIR/scripts

Make the scripts executable (e.g. chmod u+x scripts/*) the first time after cloning the repository, and run apply_permissions.sh in order to create and permission the necessary directories.

Managing the containers

Some scripts are provided for convenience. To build the containers (note, this will take a significant amount of time e.g. 2 hours, as some packages are built from source):

update_container.sh

To start them:

manage_container_gpu.sh up
manage_container.sh up

To stop them:

manage_container_gpu.sh stop
manage_container.sh stop

To purge the queue and restart the containers (useful for killing tasks that were launched):

purge_and_restart.sh

Adjusting the number of workers and threads

To take maximum advantage of your machine's capacity, you may want to tweak the number of threads for the GPU and CPU workers. This configuration is provided in projectconfig.py. Additionally, you may want to enforce certain memory limits for your workers to avoid OOM errors. This can be tweaked in docker-compose.yml and manage_container_gpu.sh.

It is also relatively straightforward to add more workers from different machines you control. For this, you will need to mount the volumes on networked-attached storage (i.e., make sure paths provided in relnet.env are network-accessible) and adjust the location of backend and queue in projectconfig.py to a network location instead of localhost. On the other machines, only start the worker container (see e.g. manage_container.sh).

Setting up graph data

Synthetic data will be automatically generated when the experiments are ran and stored to $RN_EXPERIMENT_DIR/stored_graphs.

Accessing the services

There are several services running on the manager node.

  • Jupyter notebook server: http://localhost:8888
  • Flower for queue statistics: http://localhost:5555
  • Tensorboard (currently disabled due to its large memory footprint): http://localhost:6006
  • RabbitMQ management: http://localhost:15672

The first time Jupyter is accessed it will prompt for a token to enable password configuration, it can be grabbed by running docker exec -it relnet-manager /bin/bash -c "jupyter notebook list".

Accessing experiment data and results database

Experiment data and results are stored in part as files (under your configured $RN_EXPERIMENT_DATA_DIR) as well as in a MongoDB database. To access the MongoDB database with a GUI, you can use a MongoDB client such as Robo3T and point it to http://localhost:27017.

Some functionality is provided in relnet/evaluation/storage.py to insert and retrieve data, you can use it in e.g. analysis notebooks.

Running experiments

Experiments are launched from the manager container and processed (in a parallel way) by the workers. The file relnet/evaluation/experiment_conditions.py contains the configuration for the experiments reported in the paper, but you may modify e.g. agents, objective functions, hyperparameters etc. to suit your needs.

Then, you can launch all the experiments as follows:

Part 1: Hyperparameter optimization & evaluation for all aproaches except GIL

run_part1.sh

Part 2: Data collection for GIL using the UCT algorithm

run_part2.sh

Part 3: Training & hyperparameter optimization for GIL

run_part3.sh

Monitoring experiments

  • You can navigate to http://localhost:5555 for the Flower interface which shows the progress of processing tasks in the queue. You may also check logs for both manager and worker at $RN_EXPERIMENT_DATA_DIR/logs.

Reproducing the results

Jupyter notebooks are used to perform the data analysis and produce tables and figures. Navigate to http://localhost:8888, then notebooks folder.

All tables and result figures can be obtained by opening the GGNN_Evaluation.ipynb notebook, selecting the py3-relnet kernel and run all cells. Resulting .pdf figures and .tex tables can be found at $RN_EXPERIMENT_DIR/aggregate. There are additional notebooks provided for analyzing the results of hyperparameter optimization:

  • GGNN_Hyperparam_Optimisation.ipynb for UCT
  • GGNN_Hyperparam_Optimisation_IL.ipynb for GIL

Problems with jupyter kernel

In case the py3-relnet kernel is not found, try reinstalling the kernel by running docker exec -it -u 0 relnet-manager /bin/bash -c "source activate relnet-cenv; python -m ipykernel install --user --name relnet --display-name py3-relnet"

Owner
Victor-Alexandru Darvariu
Doctoral Student at University College London and The Alan Turing Institute.
Victor-Alexandru Darvariu
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

Microsoft 8.4k Jan 01, 2023
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
Official repo for QHack—the quantum machine learning hackathon

Note: This repository has been frozen while we consider the submissions for the QHack Open Hackathon. We hope you enjoyed the event! Welcome to QHack,

Xanadu 118 Jan 05, 2023
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

Pan Lu 81 Dec 27, 2022
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave

Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories. Metrics provides i

Ben Hamner 1.6k Dec 26, 2022
ShapeGlot: Learning Language for Shape Differentiation

ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas

Panos 32 Dec 23, 2022
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)

This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach

20 Sep 08, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
Memory efficient transducer loss computation

Introduction This project implements the optimization techniques proposed in Improving RNN Transducer Modeling for End-to-End Speech Recognition to re

Fangjun Kuang 51 Nov 25, 2022
Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir.

NetScanner.py Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir. Linux'da Kullanımı: git clone https://github.com/

4 Aug 23, 2021
A bare-bones Python library for quality diversity optimization.

pyribs Website Source PyPI Conda CI/CD Docs Docs Status Twitter pyribs.org GitHub docs.pyribs.org A bare-bones Python library for quality diversity op

ICAROS 127 Jan 06, 2023
Code release for "Making a Bird AI Expert Work for You and Me".

Making-a-Bird-AI-Expert-Work-for-You-and-Me Code release for "Making a Bird AI Expert Work for You and Me". arxiv (Coming soon...) Changelog 2021/12/6

PRIS-CV: Computer Vision Group 11 Dec 11, 2022
Torchreid: Deep learning person re-identification in PyTorch.

Torchreid Torchreid is a library for deep-learning person re-identification, written in PyTorch. It features: multi-GPU training support both image- a

Kaiyang 3.7k Jan 05, 2023
KaziText is a tool for modelling common human errors.

KaziText KaziText is a tool for modelling common human errors. It estimates probabilities of individual error types (so called aspects) from grammatic

ÚFAL 3 Nov 24, 2022
Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022
unet for image segmentation

Implementation of deep learning framework -- Unet, using Keras The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Seg

zhixuhao 4.1k Dec 31, 2022
Face recognition project by matching the features extracted using SIFT.

MV_FaceDetectionWithSIFT Face recognition project by matching the features extracted using SIFT. By : Aria Radmehr Professor : Ali Amiri Dependencies

Aria Radmehr 4 May 31, 2022