This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking".

Overview

SCT

This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking"

The spatial-channel Transformer (SCT) enhancer is a task-inspired low-light enhancer toward facilitating nighttime UAV tracking. Evaluations on the public UAVDark135 and the newly constructed DarkTrack2021 benchmarks demonstrate that the performance gains of SCT brought to nighttime UAV tracking surpass general low-light enhancers.

SCT has been submitted to RA-L with ICRA option.

Environment Preparing

python 3.6
pytorch 1.8.1

Testing

Run lowlight_test.py, the results will be saved in ./result/

cd SCT
python lowlight_test.py 

Training

Before training, you need to prepare the training set of the LOL dataset. Run lowlight_train.py. The model will be saved in ./log/SCT/models

cd SCT
python lowlight_train.py --trainset_path /your/path/to/LOLdataset/

SCT for Nighttime UAV Tracking

To evaluate the performance of SCT in facilitating trackers' nighttime tracking ability, you need to meet the enviroment requirements of base trackers and download their snapshots to corresponding folders at first. Details can be found in their repos. Currently supporting trackers including HiFT, SiamAPN++, SiamRPN++, DiMP18, DiMP50, and PrDiMP50.

For HiFT, SiamAPN++, and SiamRPN++, change directory to their corresponding root, and simply run trackers with “--enhance” option

cd HiFT/SiamAPN++/pysot
python tools/test.py --dataset DarkTrack --enhance

For DiMP18, DiMP50, and PrDiMP50, customized your local paths in pytracking/evaluation/local.py

cd pytracking 
python run_tracker.py --tracker_name dimp --tracker_param dimp18/dimp50/prdimp50 --enhance 

DarkTrack2021 Benchmark

The DarkTrack2021 benchmark comprises 110 challenging sequences with 100K frames in total. All sequences are captured at nighttime in urban scenes with a frame-rate of 30 frames/s (FPS). Some first frames of selected sequences in DarkTrack2021 are displayed below.

first frames

DarkTrack2021 is now available here (password: a4lq).

Demo Video

Demo of SCT

Contact

Junjie Ye Email: [email protected]

Changhong Fu Email: [email protected]

Acknowledgements

A great thanks to Swin-Transformer for providing the basis for this code.

Owner
Intelligent Vision for Robotics in Complex Environment
Adaptive Vision for Robotics in Complex Environment
Intelligent Vision for Robotics in Complex Environment
Awesome-google-colab - Google Colaboratory Notebooks and Repositories

Unofficial Google Colaboratory Notebook and Repository Gallery Please contact me to take over and revamp this repo (it gets around 30k views and 200k

Derek Snow 1.2k Jan 03, 2023
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
A blender add-on that automatically re-aligns wrong axis objects.

Auto Align A blender add-on that automatically re-aligns wrong axis objects. Usage There are three options available in the 3D Viewport Sidebar It

29 Nov 25, 2022
Aspect-Sentiment-Multiple-Opinion Triplet Extraction (NLPCC 2021)

The code and data for the paper "Aspect-Sentiment-Multiple-Opinion Triplet Extraction" Requirements Python 3.6.8 torch==1.2.0 pytorch-transformers==1.

慢半拍 5 Jul 02, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
Not Suitable for Work (NSFW) classification using deep neural network Caffe models.

Open nsfw model This repo contains code for running Not Suitable for Work (NSFW) classification deep neural network Caffe models. Please refer our blo

Yahoo 5.6k Jan 05, 2023
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

MetaSDF: Meta-learning Signed Distance Functions Project Page | Paper | Data Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely Gordon W

Vincent Sitzmann 100 Jan 01, 2023
Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Tom-R.T.Kvalvaag 2 Dec 17, 2021
Scripts and misc. stuff related to the PortSwigger Web Academy

PortSwigger Web Academy Notes Mostly scripts to automate the exploits. Going in the order of the recomended learning path - starting with SQLi. Commun

pageinsec 17 Dec 30, 2022
Using deep learning to predict gene structures of the coding genes in DNA sequences of Arabidopsis thaliana

DeepGeneAnnotator: A tool to annotate the gene in the genome The master thesis of the "Using deep learning to predict gene structures of the coding ge

Ching-Tien Wang 3 Sep 09, 2022
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023
Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

LiDAR fog simulation Created by Martin Hahner at the Computer Vision Lab of ETH Zurich. This is the official code release of the paper Fog Simulation

Martin Hahner 110 Dec 30, 2022
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
Data and analysis code for an MS on SK VOC genomes phenotyping/neutralisation assays

Description Summary of phylogenomic methods and analyses used in "Immunogenicity of convalescent and vaccinated sera against clinical isolates of ance

Finlay Maguire 1 Jan 06, 2022
Collection of in-progress libraries for entity neural networks.

ENN Incubator Collection of in-progress libraries for entity neural networks: Neural Network Architectures for Structured State Entity Gym: Abstractio

25 Dec 01, 2022
the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet]

BGNet This repository contains the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet] Environment Python 3.6.* C

3DCV developer 87 Nov 29, 2022