Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

Overview

PWC

PWC

PWC

PWC

DMT: Dynamic Mutual Training for Semi-Supervised Learning

This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Supervised Learning, a concise and effective method for semi-supervised semantic segmentation & image classification.

Some might know it as the previous version DST-CBC, or Semi-Supervised Semantic Segmentation via Dynamic Self-Training and Class-Balanced Curriculum, if you want the old code, you can check out the dst-cbc branch.

Also, for older PyTorch version (<1.6.0) users, or the exact same environment that produced the paper's results, refer to 53853f6.

News

2021.6.7

Multi-GPU training support (based on Accelerate) is added, and the whole project is upgraded to PyTorch 1.6. Thanks to the codes & testing by @jinhuan-hit, and discussions from @lorenmt, @TiankaiHang.

2021.2.10

A slight backbone architecture difference in the segmentation task has just been identified and described in Acknowledgement.

2021.1.1

DMT is released. Happy new year! 😉

2020.12.7

The bug fix for DST-CBC (not fully tested) is released at the scale branch.

2020.11.9

Stay tuned for Dynamic Mutual Training (DMT), an updated version of DST-CBC, which has overall better and stabler performance and will be released early November. A new version Dynamic Mutual Training (DMT) will be released later, which has overall better and stabler performance.

Also, thanks to @lorenmt, a data augmentation bug fix will be released along with the next version, where PASCAL VOC performance is overall boosted by 1~2%, Cityscapes could also have better performance. But probably the gap to oracle will remain similar.

Setup

First, you'll need a CUDA 10, Python3 environment (best on Linux).

1. Setup PyTorch & TorchVision:

pip install torch==1.6.0 torchvision==0.7.0

2. Install other python packages you may require:

pip install packaging accelerate future matplotlib tensorboard tqdm
pip install git+https://github.com/ildoonet/pytorch-randaugment

3. Download the code and prepare the scripts:

git clone https://github.com/voldemortX/DST-CBC.git
cd DST-CBC
chmod 777 segmentation/*.sh
chmod 777 classification/*.sh

Getting started

Get started with SEGMENTATION.md for semantic segmentation.

Get started with CLASSIFICATION.md for image classification.

Understand the code

We refer interested readers to this repository's wiki. It is not updated for DMT yet.

Notes

It's best to use a Turing or Volta architecture GPU when running our code, since they have tensor cores and the computation speed is much faster with mixed precision. For instance, RTX 2080 Ti (which is what we used) or Tesla V100, RTX 20/30 series.

Our implementation is fast and memory efficient. A whole run (train 2 models by DMT on PASCAL VOC 2012) takes about 8 hours on a single RTX 2080 Ti using up to 6GB graphic memory, including on-the-fly evaluations and training baselines. The Cityscapes experiments are even faster.

Contact

Issues and PRs are most welcomed.

If you have any questions that are not answerable with Google, feel free to contact us through [email protected].

Citation

@article{feng2020dmt,
  title={DMT: Dynamic Mutual Training for Semi-Supervised Learning},
  author={Feng, Zhengyang and Zhou, Qianyu and Gu, Qiqi and Tan, Xin and Cheng, Guangliang and Lu, Xuequan and Shi, Jianping and Ma, Lizhuang},
  journal={arXiv preprint arXiv:2004.08514},
  year={2020}
}

Acknowledgements

The DeepLabV2 network architecture and coco pre-trained weights are faithfully re-implemented from AdvSemiSeg. The only difference is we use the so-called ResNetV1.5 implementation for ResNet-101 backbone (same as torchvision), for difference between ResNetV1 and V1.5, refer to this issue. However, the difference is reported to only bring 0-0.5% gain in ImageNet, considering we use the V1 COCO pre-trained weights that mismatch with V1.5, the overall performance should remain similar to V1. The better fully-supervised performance mainly comes from better training schedule. Besides, we base comparisons on relative performance to Oracle, not absolute performance.

The CBC part of the older version DST-CBC is adapted from CRST.

The overall implementation is based on TorchVision and PyTorch.

The people who've helped to make the method & code better: lorenmt, jinhuan-hit, TiankaiHang, etc.

Comments
  • miou problem in segmentation

    miou problem in segmentation

    Thanks for sharing a good job! I have a question. When I train cityscapes using 1/8 labeled data, two models(init from coco and imagenet) can reach nearly 59 mIOU in val set, close to 59.65 presented in the paper. However, after 5 iterations, the metric descends to 53(coco) and 22(imagenet). I check the pseudo label using the model of 59 mIOU and it is not particularly good. I don't know if that affected the results.

    question possible bug 
    opened by jinhuan-hit 26
  • Visualize the final experimental results

    Visualize the final experimental results

    Hello, your paper and code are very good, thank you for your efforts. Now I have a question to ask you, the details are as follows: First of all, I conducted experiments on my own data, and the results have been obtained. How can I use these weights to test test sets? In addition, I used dmT-VOC-20-1__p5 -- I , and use the training model to test, the effect is very poor, I do not know when the test method is correct.

    您好,您的论文和代码非常棒,感谢您的付出。现在我有个问题想请教您,具体如下:首先我是在我自己的数据上进行实验,且已经跑出结果。我如何能够用这些权值来测试测试集?此外,我使用了dmt-voc-20-1__p5--i的权重,并利用训练的模型来进行测试,效果很差,我不知道测试方法时候正确。

    question 
    opened by JayeShen1996 16
  • Nan values in confusion matrix

    Nan values in confusion matrix

    Hello, i'm using a segmentation dataset with two classes and grayscale images. I'm duplicating the channels of the image with elif pic.mode == 'L': img = torch.from_numpy(np.array(pic, np.uint8, copy=False)).expand([3, 224, 224]).reshape(-1) While training the baseline without DMT i get only accuracy values for one of the classes with nan values for the other: average row correct: ['99.52', 'nan'].

    Do you have any idea what i'd might have done wrong/missed? Thanks in advance!

    question 
    opened by dervirvel 10
  • Question about label mapping for cityscapes dataset

    Question about label mapping for cityscapes dataset

    When I was using part of your code about cityscapes benchmark, I met up with the error that

    IndexError: Caught IndexError in DataLoader worker process 0. Original Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/worker.py", line 185, in _worker_loop data = fetcher.fetch(index) File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/fetch.py", line 44, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/fetch.py", line 44, in data = [self.dataset[idx] for idx in possibly_batched_index] File "../utils/datasets.py", line 155, in getitem img1, target1 = self.transforms(img, target) File "../utils/transforms.py", line 27, in call image, target = t(image, target) File "../utils/transforms.py", line 216, in call target = target if type(target) == str else self.label_id_map[target] IndexError: index 255 is out of bounds for dimension 0 with size 34

    It seems that the LabelMap(label_id_map_city), didn't work correctly. It's the first time to using this benchmark, so I dont know how to deal with this problem, could you plz give me some hints?

    question 
    opened by revaeb 6
  • How

    How

    First of all, thank you very much for your previous help. Now I can train on my own data set, but now I have another problem. I want to convert the output of the network into a mask file like the given label. I want to know how this should be How to do it, can you help me? Can the output use softmax and then set the threshold to generate the final mask?

    question 
    opened by userhr2333 4
  • About using a better model

    About using a better model

    I would like to ask if you have used a better model for experimentation, such as deeplab V3+. Will it bring better accuracy if you use a better model?

    opened by wing212 3
  • What's the meaning of splits?

    What's the meaning of splits?

    Thanks for your hard work!

    I am new to this question. Can you explain the meaning of splits in generate_splits.py, like setting [2, 4, 8, 20, 29.75] for cityscapes? I only know that it means the ratio of labeld data and unlabeled data and really don't know why you set those values. Furthermore, if I want to train it on my own data, how can I set this variable according to the ratio of my labeled data and unlabeled data?

    Thank you for your help.

    question 
    opened by czb2133 3
  • Sudden drop in accuracy

    Sudden drop in accuracy

    Hello, I want to ask why the accuracy has suddenly dropped, and the accuracy of my reproduced article is much lower than that of the original text. I use a single 3090ti graphics card for training. image

    question 
    opened by wing212 18
  • When I run segmentation code with my own dataset, it occurs the error...

    When I run segmentation code with my own dataset, it occurs the error...

    Hello ! When I match my dataset to the cityscapes, it does not work in the model initialization phase. RuntimeError: Error(s) in loading state_dict for DeepLab: size mismatch for classifier.0.convs.0.weight: copying a param with shape torch.Size([19, 2048, 3, 3]) from checkpoint, the shape in current model is torch.Size([4, 2048, 3, 3]).

    My dataset contains only 5% labeled images. The size is 2048*1024,which is the same as the cityscapes. Could you help me find the probelm?

    Thank you very much!

    question 
    opened by grbcwq123 4
  • A warning appears during the running of the program, will this affect the accuracy?

    A warning appears during the running of the program, will this affect the accuracy?

    Warning: multi_tensor_applier fused unscale kernel is unavailable, possibly because apex was installed without --cuda_ext --cpp_ext. Using Python fallback. Original ImportError was: ModuleNotFoundError("No module named 'amp_C'",)

    The version of pytorch I installed is 1.2.0 and the version of torchvision is 0.4.0,and the version of apex is 0.1

    question 
    opened by userhr2333 2
  • [Kept for Feedback] Multi-GPU & New models

    [Kept for Feedback] Multi-GPU & New models

    Thanks for your nice work and congratulations on your good results!

    I have several questions.

    • Will your model extended to Parallel (distributed data-parallel) in the future.
    • Why don't you try to use deeplabv3+, will it lead to a better result?

    Best.

    question fixed 
    opened by TiankaiHang 21
Releases(v1.2)
Owner
Zhengyang Feng
Coder? Researcher? Artist?
Zhengyang Feng
Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection Turning pixels into virtual points for multimodal 3D object detection. Multimodal Virtual Point 3D Detection, Ti

Tianwei Yin 204 Jan 08, 2023
Official implementation for "Image Quality Assessment using Contrastive Learning"

Image Quality Assessment using Contrastive Learning Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik This is the offi

Pavan Chennagiri 67 Dec 30, 2022
A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM's

sign-language-detection A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM. The project is built for a vocabular

Hashim 4 Feb 06, 2022
Official PyTorch implementation of the paper "Self-Supervised Relational Reasoning for Representation Learning", NeurIPS 2020 Spotlight.

Official PyTorch implementation of the paper: "Self-Supervised Relational Reasoning for Representation Learning" (2020), Patacchiola, M., and Storkey,

Massimiliano Patacchiola 135 Jan 03, 2023
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
Source code of AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".

Towards End-to-End Image Compression and Analysis with Transformers Source code of our AAAI 2022 paper "Towards End-to-End Image Compression and Analy

37 Dec 21, 2022
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
Code and Data for NeurIPS2021 Paper "A Dataset for Answering Time-Sensitive Questions"

Time-Sensitive-QA The repo contains the dataset and code for NeurIPS2021 (dataset track) paper Time-Sensitive Question Answering dataset. The dataset

wenhu chen 35 Nov 14, 2022
Comp445 project - Data Communications & Computer Networks

COMP-445 Data Communications & Computer Networks Change Python version in Conda

Peng Zhao 2 Oct 03, 2022
Code for ICDM2020 full paper: "Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning"

Subg-Con Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning (Jiao et al., ICDM 2020): https://arxiv.org/abs/2009.10273 Over

34 Jul 06, 2022
Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection.

WOOD Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection. Abstract The training and test data for deep-neural-ne

8 Dec 24, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
Earthquake detection via fiber optic cables using deep learning

Earthquake detection via fiber optic cables using deep learning Author: Fantine Huot Getting started Update the submodules After cloning the repositor

Fantine 4 Nov 30, 2022
This repository contains the source code for the paper First Order Motion Model for Image Animation

!!! Check out our new paper and framework improved for articulated objects First Order Motion Model for Image Animation This repository contains the s

13k Jan 09, 2023
StyleMapGAN - Official PyTorch Implementation

StyleMapGAN - Official PyTorch Implementation StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing Hyunsu Kim, Yunj

NAVER AI 425 Dec 23, 2022
Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning

T2I_CL This is the official Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning Requirements Linux Python

42 Dec 31, 2022
RL-driven agent playing tic-tac-toe on starknet against challengers.

tictactoe-on-starknet RL-driven agent playing tic-tac-toe on starknet against challengers. GUI reference: https://pythonguides.com/create-a-game-using

21 Jul 30, 2022
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr

Image Processing Group - BarcelonaTECH - UPC 347 Nov 22, 2022