p-tuning for few-shot NLU task

Overview

p-tuning_NLU

Overview

这个小项目是受乐于分享的苏剑林大佬这篇p-tuning 文章启发,也实现了个使用P-tuning进行NLU分类的任务, 思路是一样的,prompt实现方式有不同,这里是将[unused*]的embeddings参数抽取出用于初始化prompt_embed后,再接一个lstm和mlp用于关联各prompt, 与最初p-tuning提出《GPT Understands, Too》 的实现一样,结果显示在few-shot上p-tuning非常接近finetune效果。

Dataset

数据是情感分类,下载地址百度网盘 提取码:osja

Evaluation

1. finetune

python few_shot_finetune.py

测试集效果:

epoch: 0 - acc: 0.897679 - best_test_acc: 0.8976788252013264
epoch: 1 - acc: 0.876362 - best_test_acc: 0.8976788252013264
epoch: 2 - acc: 0.884889 - best_test_acc: 0.8976788252013264
epoch: 3 - acc: 0.884415 - best_test_acc: 0.8976788252013264
epoch: 4 - acc: 0.884415 - best_test_acc: 0.8976788252013264

全量参数对小样本进行finetune,仅1个epoch就收敛了

2. p-tuning

python few_shot_ptuning.py

测试集效果:

epoch: 0 - acc: 0.546660 - best_test_acc: 0.5466603505447655
epoch: 1 - acc: 0.687826 - best_test_acc: 0.6878256750355282
epoch: 2 - acc: 0.737091 - best_test_acc: 0.7370914258645191
epoch: 3 - acc: 0.722406 - best_test_acc: 0.7370914258645191
epoch: 4 - acc: 0.776883 - best_test_acc: 0.7768829938417812
epoch: 5 - acc: 0.805306 - best_test_acc: 0.8053055423969683
epoch: 6 - acc: 0.833254 - best_test_acc: 0.8332543818095689
epoch: 7 - acc: 0.837991 - best_test_acc: 0.8379914732354334
epoch: 8 - acc: 0.854571 - best_test_acc: 0.8545712932259593
epoch: 9 - acc: 0.858361 - best_test_acc: 0.8583609663666508
epoch: 10 - acc: 0.856466 - best_test_acc: 0.8583609663666508
epoch: 11 - acc: 0.853150 - best_test_acc: 0.8583609663666508
epoch: 12 - acc: 0.868783 - best_test_acc: 0.8687825675035529
epoch: 13 - acc: 0.877309 - best_test_acc: 0.877309332070109
epoch: 14 - acc: 0.873993 - best_test_acc: 0.877309332070109
epoch: 15 - acc: 0.877783 - best_test_acc: 0.8777830412126955
epoch: 16 - acc: 0.882994 - best_test_acc: 0.8829938417811464
epoch: 17 - acc: 0.881573 - best_test_acc: 0.8829938417811464
epoch: 18 - acc: 0.889626 - best_test_acc: 0.8896257697773567
epoch: 19 - acc: 0.877783 - best_test_acc: 0.8896257697773567

仅prompt_embed和lstm及mlp去做p-tuning,20个epoch后接近收敛,acc=0.8896,略小于finetun的acc 0.8977

附上苏神结果对比:

img

Minimal GUI for accessing the Watson Text to Speech service.

Description Minimal graphical application for accessing the Watson Text to Speech service. Requirements Python 3 plus all dependencies listed in requi

Moritz Maxeiner 1 Oct 22, 2021
Nmt - TensorFlow Neural Machine Translation Tutorial

Neural Machine Translation (seq2seq) Tutorial Authors: Thang Luong, Eugene Brevdo, Rui Zhao (Google Research Blogpost, Github) This version of the tut

6.1k Dec 29, 2022
Word Bot for JKLM Bomb Party

Word Bot for JKLM Bomb Party A bot for Bomb Party on https://www.jklm.fun (Only English) Requirements pynput pyperclip pyautogui Usage: Step 1: Run th

Nicolas 7 Oct 30, 2022
DziriBERT: a Pre-trained Language Model for the Algerian Dialect

DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect.

117 Jan 07, 2023
This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini!

About CappuccinoJs This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini! Este conversor criar

Arthur Ottoni Ribeiro 48 Nov 15, 2022
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

🤗 Contributing to OpenSpeech 🤗 OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform ta

Openspeech TEAM 513 Jan 03, 2023
Unofficial Implementation of Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration

Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration This repo contains only model Implementation of Zero-Shot Text-to-Speech for Text

Rishikesh (ऋषिकेश) 33 Sep 22, 2022
A framework for implementing federated learning

This is partly the reproduction of the paper of [Privacy-Preserving Federated Learning in Fog Computing](DOI: 10.1109/JIOT.2020.2987958. 2020)

DavidChen 46 Sep 23, 2022
Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products

Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products.

Leah Pathan Khan 2 Jan 12, 2022
Semantic search through a vectorized Wikipedia (SentenceBERT) with the Weaviate vector search engine

Semantic search through Wikipedia with the Weaviate vector search engine Weaviate is an open source vector search engine with build-in vectorization a

SeMI Technologies 191 Dec 26, 2022
Simple Speech to Text, Text to Speech

Simple Speech to Text, Text to Speech 1. Download Repository Opsi 1 Download repository ini, extract di lokasi yang diinginkan Opsi 2 Jika sudah famil

Habib Abdurrasyid 5 Dec 28, 2021
原神抽卡记录数据集-Genshin Impact gacha data

提要 持续收集原神抽卡记录中 可以使用抽卡记录导出工具导出抽卡记录的json,将json文件发送至[email protected],我会在清除个人信息后

117 Dec 27, 2022
Machine translation models released by the Gourmet project

Gourmet Models Overview The Gourmet project has released several machine translation models to translate low-resource languages. This repository conta

Edinburgh NLP 5 Dec 08, 2021
An easy to use, user-friendly and efficient code for extracting OpenAI CLIP (Global/Grid) features from image and text respectively.

Extracting OpenAI CLIP (Global/Grid) Features from Image and Text This repo aims at providing an easy to use and efficient code for extracting image &

Jianjie(JJ) Luo 13 Jan 06, 2023
PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers

PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers

Microsoft 105 Jan 08, 2022
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

OpenBMB 377 Jan 02, 2023
✨Rubrix is a production-ready Python framework for exploring, annotating, and managing data in NLP projects.

✨A Python framework to explore, label, and monitor data for NLP projects

Recognai 1.5k Jan 02, 2023
An implementation of model parallel GPT-2 and GPT-3-style models using the mesh-tensorflow library.

GPT Neo 🎉 1T or bust my dudes 🎉 An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here t

EleutherAI 6.7k Dec 28, 2022
RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network trained to work with different pairs (images, texts).

RuCLIPtiny Zero-shot image classification model for Russian language RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network

Shahmatov Arseniy 26 Sep 20, 2022
Finally decent dictionaries based on Wiktionary for your beloved eBook reader.

eBook Reader Dictionaries Finally, decent dictionaries based on Wiktionary for your beloved eBook reader. Dictionaries Catalan 🚧 Ελληνικά (help welco

Mickaël Schoentgen 163 Dec 31, 2022